Skip to main content Accessibility help
×
Home

Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two

  • Alan Thompson (a1)

Abstract

We consider threefolds that admit a fibration by $\text{K3}$ surfaces over a nonsingular curve, equipped with a divisorial sheaf that defines a polarization of degree two on the general fibre. Under certain assumptions on the threefold we show that its relative log canonical model exists and can be explicitly reconstructed from a small set of data determined by the original fibration. Finally, we prove a converse to this statement: under certain assumptions, any such set of data determines a threefold that arises as the relative log canonical model of a threefold admitting a fibration by $\text{K3}$ surfaces of degree two.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two
      Available formats
      ×

Copyright

References

Hide All
[1] Avram, A. C., Kreuzer, M., Mandelberg, M., and Skarke, H., Searching for K3 fibrations. Nuclear Phys. B 494(1997), no. 3, 567589. http://dx.doi.org/10.1016/S0550-3213(97)00214-9
[2] Catanese, F. and Pignatelli, R., Fibrations of low genus I. Ann. Sci. École Norm. Sup. (4) 39(2006), no. 6, 10111049.
[3] Fujino, O., Introduction to the log minimal model program for log canonical pairs. arxiv:0907.1506.
[4] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.
[5] Hartshorne, R., Stable reflexive sheaves. Math. Ann. 254(1980), no. 2, 121176. http://dx.doi.org/10.1007/BF01467074
[6] Horikawa, E., On algebraic surfaces with pencils of curves of genus 2. In: Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 7990.
[7] Hosono, S., Lian, B. H., and Yau, S.-T., Calabi-Yau varieties and pencils of K3 surfaces. arxiv:alg-geom/9603020.
[8] Hunt, B. and Schimmrigk, R., K3-fibered Calabi-Yau threefolds I. The twist map. Internat. J. Math. 10(1999), no. 7, 833869. http://dx.doi.org/10.1142/S0129167X99000367
[9] Kawamata, Y., Matsuda, K., and Matsuki, K., Introduction to the minimal model problem. In: Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 283360.
[10] Kollár, J. and Mori, S., Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.
[11] Mayer, A. L., Families of K – 3 surfaces. Nagoya Math. J. 48(1972), 117.
[12] Mendes-Lopes, M., The relative canonical algebra for genus three fibrations. Ph.D. thesis, University of Warwick, 1989.
[13] Mullet, J. P., Toric Calabi-Yau hypersurfaces fibered by weighted K3 hypersurfaces. Comm. Anal. Geom. 17(2009), no. 1, 107138.
[14] Reid, M., Canonical 3-folds. In: Journées de Géométrie Algébrique d'Angers, Juillet 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, pp. 273310.
[15] Thompson, A., Degenerations of K3 surfaces of degree two arxiv:1010.5906.
[16] Thompson, A., Models for threefolds fibred by K3 surfaces of degree two Ph.D. thesis, University of Oxford, 2011.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Explicit Models for Threefolds Fibred by K3 Surfaces of Degree Two

  • Alan Thompson (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.