Skip to main content Accessibility help
×
Home

Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces

  • Alberto Alzati (a1) and Gian Mario Besana (a2)

Abstract

Very ampleness criteria for rank 2 vector bundles over smooth, ruled surfaces over rational and elliptic curves are given. The criteria are then used to settle open existence questions for some special threefolds of low degree.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces
      Available formats
      ×

Copyright

Corresponding author

Footnotes

Hide All

This work is within the framework of the national research project “Geomety of Algebraic Varieties” Cofin 2006 of MIUR.

Footnotes

References

Hide All
[A-B-B] Alzati, A., Bertolini, M., and Besana, G. M., Numerical criteria for very ampleness of divisors on projective bundles over an elliptic curve. Canad. J. Math. 48(1996), no. 6, 1121–1137.
[B] Brosius, J. E., Rank-2 vector bundles on a ruled surface. I. Math. Ann. 265(1983), no. 2, 155–168. doi:10.1007/BF01460796
[B-B-1] Besana, G. M. and Biancofiore, A., Degree eleven manifolds of dimension greater than or equal to three. Forum Math. 17(2005), no. 5, 711–733. doi:10.1515/form.2005.17.5.711
[B-B-2] Besana, G. M. and Biancofiore, A., Numerical constraints for embedded projective manifolds. Forum Math. 17(2005), no. 4, 613–636. doi:10.1515/form.2005.17.4.613
[B-F] Besana, G. M. and Fania, M. L., The dimension of the Hilbert scheme of special threefolds. Comm. Algebra 33(2005), no. 10, 3811–3829. doi:10.1080/00927870500242926
[B-S] Beltrametti, M. C. and Sommese, A. J., The adjunction theory of complex projective varieties. de Gruyter Expositions in Mathematics, 16, Walter de Gruyter & Co., Berlin 1995.
[B-D-S] Beltrametti, M. C., Di Rocco, S., and Sommese, A. J., On generation of jets for vector bundles. Rev. Mat. Complut. 12(1999), no. 1, 27–45.
[Bu] Butler, D. C., Normal generation of vector bundles over a curve. J. Differential Geom. 39(1994), no. 1, 1–34.
[C-M] Ciliberto, C. and Miranda, R., Degeneration of planar linear systems. J. Reine Angew. Math. 501(1998), 191–220.
[F-L-1] Fania, M. L. and Livorni, E. L., Degree nine manifolds of dimension greater than or equal to 3. Math. Nachr. 169(1994), 117–134. doi:10.1002/mana.19941690111
[F-L-2] Fania, M. L. and Livorni, E. L., Degree ten manifolds of dimension n greater than or equal to 3. Math. Nachr. 188(1997), 79–108. doi:10.1002/mana.19971880107
[G-H] Griffiths, P. and Harris, J., Principles of algebraic geometry. Reprint of the 1978 original, John Wiley & Sons, New York, 1994.
[H] Hartshorne, R., Algebraic geometry. Graduate Texts in Mathematics, 52, Springer-Verlag, New York-Heidelberg, 1977.
[H-R] Holme, A. and Roberts, J., On the embeddings of projective varieties. In: Algebraic geometry (Sundance, UT, 1986), Lecture Notes in Math., 1311, Springer, Berlin, 1988, pp. 118–146.
[D-L] Lazarsfeld, R. and del Busto, G. F., Lectures on linear series. In: Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., 3, American Mathematical Society, Providence, RI, 1997, pp. 161–219.
[M] Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic Geometry, Sendai 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 449–476.
[O] Ottaviani, G., On 3-folds in P5 which are scrolls. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 19(1992), no. 3, 451–471.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces

  • Alberto Alzati (a1) and Gian Mario Besana (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed