Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:48:55.925Z Has data issue: false hasContentIssue false

Carleson Measures on Spaces of Hardy-Sobolev Type

Published online by Cambridge University Press:  20 November 2018

Carme Cascante
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi Facultat de Matemàtiques Universitat de Barcelona Gran Via585 08071 Barcelona e-mail: cascante@cerber.mat.ub.esortega@cerber.mat.ub.es
Joaquín M. Ortega
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi Facultat de Matemàtiques Universitat de Barcelona Gran Via585 08071 Barcelona e-mail: cascante@cerber.mat.ub.esortega@cerber.mat.ub.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study positive measures on 𝔹n satisfying that . for any ƒ ∈ where is the Hardy-Sobolev space in the unit ball. We obtain several computable sufficient conditions as well as some necessary conditions and establish their sharpness. We study the same problem for Besov-Sobolev spaces and give some applications to multipliers.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

[A-Bo] Amar, E. and Bonami, A., Mesures de Carleson d'ordre a et solutions au bord de l'équation d, Bull. Soc. Math. France 107(1979), 2348.Google Scholar
[A-C] Ahern, P. and Cohn, W., Exceptional sets for Hardy-Sobolev functions, p >, 1, Indiana Univ. Math. J. (2) 38(1989), 417451.,+1,+Indiana+Univ.+Math.+J.+(2)+38(1989),+417–451.>Google Scholar
[A-J] Ahern, P. and Jevtic, M., Inner multipliers of the Besov spaces, 0 < p ≤, 1, Rocky Mountain J. Math. 20(1990), 75S-764.Google Scholar
[Be] Beatrous, F., Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191(1986), 91116.Google Scholar
[Be-Bu] Beatrous, F. and Burbea, J., Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276(1989).Google Scholar
[C] Carleson, L., Interpolation by bounded analytic functions and the corona problem, Ann. of Math. 76(1962), 547559.Google Scholar
[Ca-O] Cascante, C. and Ortega, J.M., Tangential-exceptional sets for Hardy-Sobolev spaces, Illinois J. Math. 39(1995), 6885.Google Scholar
[Ci-Do-Su] Cifuentes, P., Dorronsoro, J.R. and Sueiro, J., Boundary tangential convergence on spaces of homogeneous type, Trans. Amer. Math. Soc. 332(1992), 331350.Google Scholar
[F-S] Fefferman, C.L. and Stein, E.M., IF spaces of several variables, Acta Math. 129(1972), 137193.Google Scholar
[Ke-S] Kerman, R. and Sawyer, E., Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer. Math. Soc. (1) 309(1988), 8798.Google Scholar
[Ka-S] Kahane, J.P. and Salem, R., Ensembles parfaits et séries trigonométriques, (éd. Herman), 1963.Google Scholar
[Lu1] Luecking, D.H., Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. (2) 34(1985), 319336.Google Scholar
[Lu2] Luecking, D.H., Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives,, Amer. J. Math. 107(1985), 85111.Google Scholar
[M-K] Maz'ya, V.G. and Khavin, V.P., Non-linear potential theory, Russian Math. Surveys 27(1972), 71148.Google Scholar
[Me] Meyers, N.M., A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26(1970), 255292.Google Scholar
[N-R-S] Nagel, A., Rudin, W. and Shapiro, J.H., Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116(1982), 331360.Google Scholar
[O-F] Ortega, J.M. and Fabrega, J., Mixed-norm spaces and interpolation, Studia. Math. 109(1994), 233254.Google Scholar
[St] Stegenga, D.A., Multipliers of the Dirichlet space, Illinois J. Math. 24(1980), 113139.Google Scholar
[Ve] Verbitsky, I., Inner functions, Besov spaces and multipliers, Soviet Math. Dokl. 29(1984), 407410.Google Scholar