Skip to main content Accessibility help
×
Home

A Beurling Theorem for Generalized Hardy Spaces on a Multiply Connected Domain

  • Yanni Chen (a1), Don Hadwin (a2), Zhe Liu (a3) and Eric Nordgren (a2)

Abstract

The object of this paper is to prove a version of the Beurling–Helson–Lowdenslager invariant subspace theorem for operators on certain Banach spaces of functions on a multiply connected domain in $\mathbb{C}$ . The norms for these spaces are either the usual Lebesgue and Hardy space norms or certain continuous gauge norms. In the Hardy space case the expected corollaries include the characterization of the cyclic vectors as the outer functions in this context, a demonstration that the set of analytic multiplication operators is maximal abelian and reflexive, and a determination of the closed operators that commute with all analytic multiplication operators.

Copyright

References

Hide All
[1] Aleman, A. and Richter, S., Simply invariant subspaces of H2 of some multiply connected regions. Integral Equations Operator Theory 24(1996), no. 2, 127155. http://dx.doi.org/10.1007/BF01193457
[2] Aleman, A. and Richter, S., Erratum: “Simply invariant subspaces of H2 of some multiply connected regions”. Integral Equations Operator Theory 29(1997), no. 4, 501504. http://dx.doi.Org/10.1007/BF01193814
[3] Beurling, A., On two problems concerning linear transformations in Hilbert space. Acta Math. 81(1949), no. 17, 239255.
[4] Chen, Y., Lebesgue and Hardy spaces for symmetric norms I. arxiv:1407.7920
[5] Chen, Y., A general Beurling-Helson-Lowdenslager theorem on the disk. Adv. in Appl. Math. 87(2017), 115. http://dx.doi.Org/10.1016/j.aam.2016.11.004
[6] Conway, J. B., Functions of one complex variable II. Graduate Texts in Mathematics, 159, Springer-Verlag, New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0817-4
[7] Fisher, S. D., Function theory on planar domains. A second course in complex analysis. Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.
[8] Forelli, E., Bounded holomorphic functions and projections. Illinois J. Math. 10(1966), 367380.
[9] Gamelin, T. W., Hp spaces and extremal functions in H1 . Trans. Amer. Math. Soc. 124(1966), 158167. http://dx.doi.Org/10.2307/1994442
[10] Gamelin, T. W., Uniform algebras. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969.
[11] Hadwin, D., Liu, Z., and Nordgren, E., Closed densely defined operators commuting with multiplications in a multiplier pair. Proc. Amer. Math. Soc. 141(2013), no. 9, 30933105. http://dx.doi.Org/10.1090/S0002-9939-2013-11753-3
[12] Hadwin, D. and Nordgren, E., A general view of multipliers and composition operators. Linear Algebra Appl. 383(2004), 187211. http://dx.doi.Org/10.1016/j.laa.2003.12.031
[13] Hasumi, M., Invariant subspace theorems for finite Riemann surfaces. Canad. J. Math. 18(1966), 240255. http://dx.doi.org/10.4153/CJM-1966-027-1
[14] Helson, H. and Lowdenslager, D., Invariant subspaces. In: Proc. Internat. Sympos. Linear Spaces, (Jerusalem, 1960), Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 251262.
[15] Hitt, D., Invariant subspaces of ℋ2 of an annulus. Pacific J. Math. 134(1988), no. 1, 101120. http://dx.doi.Org/10.2140/pjm.1988.134.101
[16] Kuratowski, C., Théorèmes sur l'homotopie des fonctions continues de variable complexe et leurs rapports è la Théorie des fonctions analytiques. Fund. Math. 33(1945), 316367. http://dx.doi.org/10.4064/fm-33-1-316-367
[17] Nehari, Z., Conformal mapping. McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
[18] Parreau, M., Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. Inst. Fourier Grenoble 3(1951), 103197. http://dx.doi.Org/10.5802/aif.37
[19] Royden, H. L., Invariant subspaces of ℋ p for multiply connected regions. Pacific J. Math. 134(1988), no. 1, 151172. http://dx.doi.org/10.2140/pjm.1988.134.151
[20] Rudin, W., Analytic functions of class Hp . Trans. Amer. Math. Soc. 78(1955), 4666. http://dx.doi.Org/10.2307/1992948
[21] Rudol, K., Some results related to Beurling's theorem. Univ. Iagel. Acta Math., 38(2000), 289298.
[22] Saks, S. and Zygmund, A., Analytic functions. Third ed., Elsevier Publishing Co., Amsterdam-London-New York; PWN—Polish Scientific Publishers, Warsaw, 1971.
[23] Sarason, D., The Hp spaces of an annulus. Mem. Amer. Math. Soc. 56(1965).
[24] Tsuji, M., Potential theory in modern function theory. Maruzen Co., Ltd., Tokyo, 1959.
[25] Voichick, M., Ideals and invariant subspaces of analytic functions. Trans. Amer. Math. Soc. 111(1964), 493512. http://dx.doi.org/10.1090/S0002-9947-1964-0160920-5
[26] Voichick, M., Invariant subspaces on Riemann surfaces. Canad. J. Math. 18(1966), 399403. http://dx.doi.org/10.4153/CJM-1966-042-8
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed