Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:42:58.265Z Has data issue: false hasContentIssue false

Poles of the Standard ${\mathcal{L}}$-function of $G_{2}$ and the Rallis–Schiffmann Lift

Published online by Cambridge University Press:  07 March 2019

Nadya Gurevich
Affiliation:
School of Mathematics, Ben Gurion University of the Negev, POB 653, Be’er Sheva 84105, Israel Email: ngur@math.bgu.ac.il
Avner Segal
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel University of British Columbia, Vancouver BC V6T 1Z2 Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel Email: segalavner@gmail.com

Abstract

We characterize the cuspidal representations of $G_{2}$ whose standard ${\mathcal{L}}$-function admits a pole at $s=2$ as the image of the Rallis–Schiffmann lift for the commuting pair ($\widetilde{\text{SL}}_{2}$, $G_{2}$) in $\widetilde{\text{Sp}}_{14}$. The image consists of non-tempered representations. The main tool is the recent construction, by the second author, of a family of Rankin–Selberg integrals representing the standard ${\mathcal{L}}$-function.

Type
Article
Copyright
© Canadian Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors were partially supported by grants 1691/10 and 259/14 from the Israel Science Foundation.

References

Gan, Wee Teck, Multiplicity formula for cubic unipotent Arthur packets . Duke Math. J. 130(2005), no. 2, 297320.Google Scholar
Gan, Wee Teck and Gurevich, Nadya, Nontempered A-packets of G 2: liftings from ˜SL2 . Amer. J. Math. 128(2006), no. 5, 11051185. https://doi.org/10.1353/ajm.2006.0040.Google Scholar
Gan, Wee Teck, Gurevich, Nadya, and Jiang, Dihua, Cubic unipotent Arthur parameters and multiplicities of square integrable automorphic forms . Invent. Math. 149(2002), no. 2, 225265. https://doi.org/10.1007/s002220200210.Google Scholar
Gan, Wee Teck, Gross, Benedict, and Savin, Gordan, Fourier coefficients of modular forms on G 2 . Duke Math. J. 115(2002), no. 1, 105169. https://doi.org/10.1215/S0012-7094-02-11514-2.Google Scholar
Ginzburg, David, On the standard L-function for G 2 . Duke Math. J. 69(1993), no. 2, 315333. https://doi.org/10.1215/S0012-7094-93-06915-3.Google Scholar
Ginzburg, David and Jiang, Dihua, Periods and liftings: from G 2 to C 3 . Israel J. Math. 123(2001), 2959. https://doi.org/10.1007/BF02784119.Google Scholar
Ginzburg, David, Rallis, Stephen, and Soudry, David, On the automorphic theta representation for simply laced groups . Israel J. Math. 100(1997), 61116. https://doi.org/10.1007/BF02773635.Google Scholar
Ginzburg, David, Rallis, Stephen, and Soudry, David, A tower of theta correspondences for G 2 . Duke Math. J. 88(1997), no. 3, 537624. https://doi.org/10.1215/S0012-7094-97-08821-9.Google Scholar
Gurevich, Nadya and Segal, Avner, The Rankin–Selberg integral with a non-nique model for the standard L-function of G 2 . J. Inst. Math. Jussieu 14(2015), no. 1, 149184. https://doi.org/10.1017/S147474801300039X.Google Scholar
Helgason, Sigurdur, Groups and geometric analysis . Pure and Applied Mathematics, 113. Academic Press, Orlando, FL, 1984.Google Scholar
Hörmander, Lars, An introduction to complex analysis in several variables , Third edition., North-Holland Mathematical Library, 7. North-Holland Publishing, Amsterdam, 1990.Google Scholar
Huang, Jing-Song, Magaard, Kay, and Savin, Gordan, Unipotent representations of G 2 arising from the minimal representation of D 4 E . J. Reine Angew. Math. 500(1998), 6581.Google Scholar
Ikeda, Tamotsu, On the location of poles of the triple L-functions . Compositio Math. 83(1992), no. 2, 187237.Google Scholar
Ikeda, Tamotsu, On the theory of Jacobi forms and Fourier–Jacobi coefficients of Eisenstein series . J. Math. Kyoto Univ. 34(1994), no. 3, 615636. https://doi.org/10.1215/kjm/1250518935.Google Scholar
Jiang, Dihua, G 2-periods and residual representations . J. Reine Angew. Math. 497(1998), 1746.Google Scholar
Kudla, Stephen S., Splitting metaplectic covers of dual reductive pairs . Israel J. Math. 87(1994), 361401. https://doi.org/10.1007/BF02773003.Google Scholar
Lapid, Erez M., A remark on Eisenstein series . In: Eisenstein series and applications . Progr. Math., 258. Birkhäuser Boston, Boston, MA, 2008, pp. 239249.Google Scholar
Mœglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series . Cambridge Tracts in Mathematics, 113. Cambridge University Press, Cambridge, 1995.Google Scholar
Prasad, Dipendra, A brief survey on the theta correspondence . In: Number theory . Contemp. Math., 210. American Mathematical Society, Providence, RI, 1998, pp. 171193. https://doi.org/10.1090/conm/210/02790.Google Scholar
Rallis, S. and Schiffmann, G., Theta correspondence associated to G 2 . Amer. J. Math. 111(1989), no. 5, 801849. https://doi.org/10.2307/2374882.Google Scholar
Sahi, Siddhartha, Jordan algebras and degenerate principal series . J. Reine Angew. Math. 462(1995), 118. https://doi.org/10.1515/crll.1995.462.1.Google Scholar
Segal, A., The degenerate Eisenstein series attached to the Heisenberg parabolic subgroups of quasi-split forms of D 4 . Trans. Amer. Math. Soc. 370(2018), no. 8, 59836039. https://doi.org/10.1090/tran/7293.Google Scholar
Segal, A., The degenerate residual spectrum of quasi-split forms of Spin 8 associated to the Heisenberg parabolic subgroup. 2018. arxiv:1804.08849.Google Scholar
Segal, A., Rankin-Selberg integrals with a non-unique model for the standard L-function of cuspidal representations of the exceptional group of type G 2. Ph.D. thesis, Ben-Gurion University of the Negev, 2016.Google Scholar
Segal, A., A family of new-way integrls for the standard L-function of cuspidal representations of the exceptional group of type G 2 . Int. Math. Res. Not. IMRN (2017), no. 7, 20142099. https://doi.org/10.1093/imrn/rnw090.Google Scholar
Shahidi, Freydoon, Whittaker models for real groups . Duke Math. J. 47(1980), no. 1, 99125. https://doi.org/10.1215/S0012-7094-80-04708-0.Google Scholar
Steinberg, Robert, Lectures on Chevalley groups . Yale University, New Haven, Conn., 1968.Google Scholar
Waldspurger, J.-L., Correspondance de Shimura . J. Math. Pures Appl. 59(1980), no. 1, 1132.Google Scholar
Waldspurger, J.-L., Correspondances de Shimura et quaternions . Forum Math. 3(1991), no. 3, 219307.Google Scholar
Weissman, Martin H., The Fourier-Jacobi map and small representations . Represent. Theory 7(2003), 275299. https://doi.org/10.1090/S1088-4165-03-00197-3.Google Scholar
Winarsky, Norman, Reducibility of principal series representations of p-adic Chevalley groups . Amer. J. Math. 100(1978), no. 5, 941956. https://doi.org/10.2307/2373955.Google Scholar