Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 0.279 Render date: 2021-04-19T01:18:20.354Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Galois Correspondence for Reduced Crossed Products of Simple $\text{C}^{\ast }$-algebras by Discrete Groups

Published online by Cambridge University Press:  07 January 2019

Jan Cameron
Affiliation:
Department of Mathematics, Vassar College, Poughkeepsie, NY 12604, USA Email: jacameron@vassar.edu
Roger R. Smith
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA Email: rsmith@math.tamu.edu
Corresponding

Abstract

Let a discrete group $G$ act on a unital simple $\text{C}^{\ast }$-algebra $A$ by outer automorphisms. We establish a Galois correspondence $H\mapsto A\rtimes _{\unicode[STIX]{x1D6FC},r}H$ between subgroups of $G$ and $\text{C}^{\ast }$-algebras $B$ satisfying $A\subseteq B\subseteq A\rtimes _{\unicode[STIX]{x1D6FC},r}G$, where $A\rtimes _{\unicode[STIX]{x1D6FC},r}G$ denotes the reduced crossed product. For a twisted dynamical system $(A,G,\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D70E})$, we also prove the corresponding result for the reduced twisted crossed product $A\rtimes _{\unicode[STIX]{x1D6FC},r}^{\unicode[STIX]{x1D70E}}G$.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Author J. C. was partially supported by Simons Collaboration Grant for Mathematicians #319001. Author R. S. was partially supported by Simons Collaboration Grant for Mathematicians #522375.

References

Bédos, E., Discrete groups and simple C-algebras . Math. Proc. Cam. Phil. Soc. 109(1991), 521537. https://doi.org/10.1017/S0305004100069966.CrossRefGoogle Scholar
Bonsall, F. F. and Duncan, J., Complete normed algebras . Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.Google Scholar
Bryder, R. S. and Kennedy, M., Reduced twisted crossed products over C-simple groups . Int. Math. Res. Not. IMRN 2018 no. 6, 16381655. https://doi.org/10.1093/imrn/rnw296.Google Scholar
Bures, D., Abelian subalgebras of von Neumann algebras . Memoirs of the American Mathematical Society, 110, American Mathematical Society, Providence, RI, 1971.Google Scholar
Cameron, J. M., Hochschild cohomology of II 1 factors with Cartan maximal abelian subalgebras . Proc. Edinb. Math. Soc. 52(2009), no. 2, 287295. https://doi.org/10.1017/S0013091507000053.CrossRefGoogle Scholar
Cameron, J., Pitts, D. R., and Zarikian, V., Bimodules over Cartan MASAs in von Neumann algebras, norming algebras, and Mercer’s theorem . New York J. Math. 19(2013), 455486.Google Scholar
Cameron, J. and Smith, R. R., Bimodules in crossed products of von Neumann algebras . Adv. Math. 274(2015), 539561. https://doi.org/10.1016/j.aim.2014.12.038.CrossRefGoogle Scholar
Cameron, J. and Smith, R. R., Intermediate subalgebras and bimodules for general crossed products of von Neumann algebras . Internat. J. Math. 27(2016), no. 11, 1650091. https://doi.org/10.1142/S0129167X16500919.CrossRefGoogle Scholar
Choda, H., A Galois correspondence in a von Neumann algebra . Tôhoku Math. J. 30(1978), 491504. https://doi.org/10.2748/tmj/1178229909.CrossRefGoogle Scholar
Choda, H., A correspondence between subgroups and subalgebras in a discrete C-crossed product . Math. Japon. 24(1979/80), 225229.Google Scholar
Choi, M. D., Completely positive linear maps on complex matrices . Linear Algebra and Appl. 10(1975), 285290. https://doi.org/10.1016/0024-3795(75)90075-0.CrossRefGoogle Scholar
Christensen, E. and Sinclair, A. M., Module mappings into von Neumann algebras and injectivity . Proc. London Math. Soc. 71(1995), 618640. https://doi.org/10.1112/plms/s3-71.3.618.CrossRefGoogle Scholar
Elliott, G. A., Some simple C-algebras constructed as crossed products with discrete outer automorphism groups . Publ. Res. Inst. Math. Sci. 16(1980), 299311. https://doi.org/10.2977/prims/1195187509.CrossRefGoogle Scholar
Glimm, J., A Stone-Weierstrass theorem for C-algebras . Ann. of Math. 72(1960), 216244. https://doi.org/10.2307/1970133.CrossRefGoogle Scholar
Haagerup, U. and Kraus, J., Approximation properties for group C-algebras and group von Neumann algebras . Trans. Amer. Math. Soc. 344(1994), 667699. https://doi.org/10.2307/2154501.Google Scholar
Haagerup, U. and Zsidó, L., Sur la propriété de Dixmier pour les C-algèbres . C. R. Acad. Sci. Paris Sér. I Math. 298(1984), 173176.Google Scholar
Halpern, H., Essential central spectrum and range for elements of a von Neumann algebra . Pacific J. Math. 43(1972), 349380. https://doi.org/10.2140/pjm.1972.43.349.CrossRefGoogle Scholar
Izumi, M., Inclusions of simple C-algebras . J. Reine Angew. Math. 547(2002), 97138. https://doi.org/10.1515/crll.2002.055.Google Scholar
Izumi, M., Longo, R., and Popa, S., A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras . J. Funct. Anal. 155(1998), 2563. https://doi.org/10.1006/jfan.1997.3228.CrossRefGoogle Scholar
Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras. Vol. II. Advanced theory . Pure and Applied Mathematics, 100, Academic Press, Inc., Orlando, FL, 1986. https://doi.org/10.1016/S0079-8169(08)60611-X.Google Scholar
Kishimoto, A., Simple crossed products of C-algebras by locally compact abelian groups . Yokohama Math. J. 28(1980), 6985.Google Scholar
Kishimoto, A., Outer automorphisms and reduced crossed products of simple C-algebras . Comm. Math. Phys. 81(1981), 429435. https://doi.org/10.1007/BF01209077.CrossRefGoogle Scholar
Landstad, M. B., Olesen, D., and Pedersen, G. K., Towards a Galois theory for crossed products of C-algebras . Math. Scand. 43(1978), 311321. https://doi.org/10.7146/math.scand.a-11783.CrossRefGoogle Scholar
Mercer, R., Bimodules over Cartan subalgebras. Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987). Rocky Mountain J. Math. 20 (1990), 487–502. https://doi.org/10.1216/rmjm/1181073123.CrossRefGoogle Scholar
Mercer, R., Isometric isomorphisms of Cartan bimodule algebras . J. Funct. Anal. 101(1991), 1024. https://doi.org/10.1016/0022-1236(91)90144-T.CrossRefGoogle Scholar
Murray, F. J. and von Neumann, J., On rings of operators . Ann. Math. 37(1936), 116229. https://doi.org/10.2307/1968693.CrossRefGoogle Scholar
Olesen, D., Inner -automorphisms of simple C-algebras . Comm. Math. Phys. 44(1975), 175190. https://doi.org/10.1007/BF01608830.CrossRefGoogle Scholar
Packer, J. A. and Raeburn, I., Twisted crossed products of C-algebras . Math. Proc. Cam. Phil. Soc. 106(1989), 293311. https://doi.org/10.1017/S0305004100078129.CrossRefGoogle Scholar
Phillips, J., Outer automorphisms of separable C-algebras . J. Funct. Anal 70(1987), 111116. https://doi.org/10.1016/0022-1236(87)90125-X.CrossRefGoogle Scholar
Pop, F., Sinclair, A. M., and Smith, R. R., Norming C-algebras by C-subalgebras . J. Funct. Anal. 175(2000), 168196. https://doi.org/10.1006/jfan.2000.3601.CrossRefGoogle Scholar
Quigg, J. C., Duality for reduced twisted crossed products of C-algebras . Indiana Univ. Math. J. 35(1986), 549571. https://doi.org/10.1512/iumj.1986.35.35029.CrossRefGoogle Scholar
Sakai, S., Derivations of simple C-algebras . J. Funct. Anal. 2(1968), 202206. https://doi.org/10.1016/0022-1236(68)90017-7.CrossRefGoogle Scholar
Sinclair, A. M. and Smith, R. R., Finite von Neumann algebras and masas . London Math. Soc. Lecture Note Series, 351, Cambridge Univ. Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511666230.Google Scholar
Strǎtilǎ, S., Central spectral theory in W-algebras, and applications . (Romanian) Stud. Cerc. Mat. 25(1973), 11671259.Google Scholar
Strǎtilǎ, S. and Zsidó, L., An algebraic reduction theory for W-algebras. II . Rev. Roumaine Math. Pures Appl. 18(1973), 407460.Google Scholar
Sutherland, C. E., Cohomology and extensions of von Neumann algebras I . Publ. Res. Inst. Math. Sci. 16(1980), 105133. https://doi.org/10.2977/prims/1195187501.CrossRefGoogle Scholar
Takesaki, M., Theory of operator algebras. I . Springer-Verlag, New York-Heidelberg, 1979.CrossRefGoogle Scholar
van Daele, A., Continuous crossed products and type III von Neumann algebras . London Math. Soc. Lecture Note Series, 31, Cambridge Univ. Press, Cambridge, 1978.Google Scholar
Wright, F. B., A reduction for algebras of finite type . Ann. of Math. 60(1954), 560570. https://doi.org/10.2307/1969851.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 64 *
View data table for this chart

* Views captured on Cambridge Core between 07th January 2019 - 19th April 2021. This data will be updated every 24 hours.

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Galois Correspondence for Reduced Crossed Products of Simple $\text{C}^{\ast }$-algebras by Discrete Groups
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Galois Correspondence for Reduced Crossed Products of Simple $\text{C}^{\ast }$-algebras by Discrete Groups
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Galois Correspondence for Reduced Crossed Products of Simple $\text{C}^{\ast }$-algebras by Discrete Groups
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *