Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-xl52z Total loading time: 0.285 Render date: 2021-04-19T19:08:41.036Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A + Condition

Published online by Cambridge University Press:  20 November 2018

F. J. Martín-Reyes
Affiliation:
Andlisis Matemdtico Facultad de Ciencias Universidad de Malaga 29071 Malaga Spain, e-mail: MARTIN-REYES@CCUMA UMA ES
L. Pick
Affiliation:
Mathematical Institute of the Czechoslovak Academy of Sciences žitna 25 115 67 Prahal, Czechoslovakia, e-mail: PICK@CSEARN.BITNET
A. De La Torre
Affiliation:
Analisis Matemdtico Facultad de Ciencias Universidad de Malaga 29071 Malaga, Spain, e-mail:TORRE-R@CCUMA.UMA.ES
Rights & Permissions[Opens in a new window]

Abstract

The good weights for the one-sided Hardy-Littlewood operators have been characterized by conditions . In this paper we introduce a new condition which is analogous to A. We show several characterizations of . For example, we prove that the class of weights is the union of classes. We also give a new characterization of weights. Finally, as an application of condition, we characterize the weights for one-sided fractional integrals and one-sided fractional maximal operators.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1993

Footnotes

This research has been partially supported by D.G.I.C.Y.T. grant (PB88-0324) and Junta de Andalucia.

References

[AS] Andersen, K.F. and Sawyer, E.T., Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators, Trans. Amer. Math. Soc. 308(1988), 547557.Google Scholar
[BK] Bagby, R.J. andKurtz, D.S., A rearranged good X-inequality, Trans. Amer. Math. Soc. 293(1986), 7181.Google Scholar
[CF] Coifman, R.R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, StudiaMath. 51(1974), 241250.Google Scholar
[GR] Garcia-Cuerva, J. and de Francia, J.L. Rubio, Weighted norm inequalities and related topics, North- Holland, 1985.Google Scholar
[KT] Kerman, R.A. and Torchinsky, A., Integral inequalities with weights for the Hardy maximal function, Studia Math. 71(1982), 277284.Google Scholar
[K] Kurtz, D.S., Better good X-inequalities, Miniconference on Harmonic Analysis and Operator Algebras Canberra 1987, Proc. Centre Math. Anal. Austral. Nat. Univ. 15, (1987), 118130.Google Scholar
[M] Martin, F.J.-Reyes, New proofs of weighted inequalities for the one sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117(1993), 691698.Google Scholar
[MOT] Martin, F.J.-Reyes, Salvador, P.Ortega and de la Torre, A. , Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319-2(1990), 517534.Google Scholar
[MT] Martin-Reyes, F.J. and de la Torre, A., Two weight norm inequalities for fractional one-sided maximal operators, Proc. Amer. Math. Soc. 117(1993), 483489.Google Scholar
[MW] Muckenhouptand, B. Wheeden, R.L., Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192(1974), 261274.Google Scholar
[Ol] Ortega, P., Weighted inequalities for one sided maximal functions in Orlicz spaces, Studia Math, to appear.Google Scholar
[O2] Ortega, P., Pesos para operadores maximales y teoremas ergodicos en espacios Lp, Lp q y de Orlicz, Doctoral thesis, Universidad de Malaga, 1991.Google Scholar
[S] Sawyer, E., Weighted inequalities for the one sided Hardy-Litlewoodmaximalfunctions, Trans. Amer. Math. Soc. 297(1986), 5361.Google Scholar
[St] Stein, E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton N.J., 1970.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 38 *
View data table for this chart

* Views captured on Cambridge Core between 20th November 2018 - 19th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A + Condition
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A + Condition
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A + Condition
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *