Skip to main content Accessibility help
×
Home

Test characteristics of neuroimaging in the emergency department evaluation of children for cerebrospinal fluid shunt malfunction

  • Ahmed Mater (a1) (a2), Manohar Shroff (a3), Sami Al-Farsi (a4), James Drake (a5) and Ran D. Goldman (a6) (a2)...

Abstract

Objective:

Cerebrospinal fluid (CSF) shunt malfunction is one of the most common life-threatening neurosurgical conditions. In the emergency department (ED), imaging techniques to identify shunt malfunction include the shunt series (SS) and CT scanning of the head. We sought to determine the test characteristics of the SS and CT scan for identifying children with shunt malfunction.

Methods:

We retrospectively reviewed the medical records of children with a CSF shunt who presented to our tertiary care pediatric emergency department and received an SS during a 2-year period from Jan. 1, 2001, to Dec. 31, 2002. A pediatric neuroradiologist reviewed all SS and CT scans. We defined shunt malfunction as present if the child underwent operative shunt revision.

Results:

We identified 437 ED visits by 280 children. Forty-seven SS were read as abnormal. A CT scan was performed in 386 (88.3%) cases and 80 were abnormal. Shunt malfunction was identified in 131 (30.0%) children. Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio and negative likelihood ratio of the SS for identifying cases of shunt malfunction were 30.0%, 95.8%, 72.3%, 75.1%, 7.1 and 0.7, respectively; for the CT scan, they were 61.0%, 82.7%, 64.5%, 80.5%, 3.5 and 0.5, respectively.

Conclusion:

Neuroimaging has a low sensitivity for identifying shunt malfunction. Neurosurgical consultation should be sought if shunt malfunction is clinically suspected, despite normal imaging.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Test characteristics of neuroimaging in the emergency department evaluation of children for cerebrospinal fluid shunt malfunction
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Test characteristics of neuroimaging in the emergency department evaluation of children for cerebrospinal fluid shunt malfunction
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Test characteristics of neuroimaging in the emergency department evaluation of children for cerebrospinal fluid shunt malfunction
      Available formats
      ×

Copyright

Corresponding author

Division of Pediatric Emergency Medicine, BC Children's Hospital, Department of Pediatrics, University of British Columbia, Child & Family Research Institute (CFRI), Rm K4-226, Ambulatory Care Building, 4480 Oak St., Vancouver BC V6H 3V4; rgoldman@cw.bc.ca

References

Hide All
1.Casey, AT, Kimmings, EJ, Kleinlugtebeld, AD, et al. The long-term outlook for hydrocephalus in childhood: a ten-year cohort study of 155 patients. Pediatr Neurosurg 1997;27:6370.
2.Di Rocco, C, Marchese, E, Velardi, F. A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus: cooperative survey of the 1991–1992 Education Committee of the ISPN. Childs Nerv Syst 1994;10:321–7.
3.Madikians, A, Conway, EE. Cerebrospinal fluid shunt problems in pediatric patients. Pediatr Ann 1997;26:613–20.
4.Madsen, MA. Emergency department management of ventriculoperitoneal cerebrospinal fluid shunts. Ann Emerg Med 1986;15:1330–43.
5.Storrow, AB. Intracranial shunt assessment. In: Roberts, JR, Hedges, JR, editors. Clinical procedures in emergency medicine. 3rd ed. Philadelphia (PA): Saunders Company; 1998. p. 1042–51.
6.Goeser, CD, McLeary, MS, Young, LW. Diagnostic imaging of ventriculoperitoneal shunt malfunctions and complications. Radiographics 1998;18:635–51.
7.Rothrock, SG, Green, SM, Harding, M, et al. Plain abdominal radiography in the detection of acute medical and surgical disease in children: a retrospective analysis. Pediatr Emerg Care 1991;7:281–5.
8.Gilbreath, PL, Mulligan, ME, Sileo, DR. Utilization and cost effectiveness review of shunt series to rule out ventriculoperitoneal shunt malfunction. Emerg Radiol 1999;6:345–9.
9.Zorc, JJ, Krugman, SD, Ogborn, J, et al. Radiographic evaluation for suspected cerebrospinal fluid shunt obstruction. Pediatr Emerg Care 2002;18:337–40.
10.Amacher, AL, Spence, JD. Spectrum of benign intracranial hypertension in children and adolescents. Childs Nerv Syst 1985;1:81–6.
11.Borgesen, SE, Gjerris, F. Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow. J Neurosurg 1987;67:535–9.
12.Fried, A, Shapiro, K. Subtle deterioration in shunted childhood hydrocephalus. A biomechanical and clinical profile. J Neurosurg 1986;65:211–6.
13.Engel, M, Carmel, PW, Chutorian, AM. Increased intraventricular pressure without ventriculomegaly in children with shunts: “normal volume” hydrocephalus. Neurosurgery 1979;5:549–52.
14.Iskandar, BJ, McLaughlin, C, Mapstone, TB, et al. Pitfalls in the diagnosis of ventricular shunt dysfunction: radiology reports and ventricular size. Pediatrics 1998;101:1031–6.
15.Murtagh, FR, Quencer, RM, Poole, CA. Cerebrospinal fluid shunt function and hydrocephalus in the pediatric age group: a radiographic/clinical correlation. Radiology 1979;132:385–8.
16.Watkins, L, Hayward, R, Andar, U, et al. The diagnosis of blocked cerebrospinal fluid shunts: a prospective study of referral to a paediatric neurosurgical unit. Childs Nerv Syst 1994;10:8790.

Keywords

Test characteristics of neuroimaging in the emergency department evaluation of children for cerebrospinal fluid shunt malfunction

  • Ahmed Mater (a1) (a2), Manohar Shroff (a3), Sami Al-Farsi (a4), James Drake (a5) and Ran D. Goldman (a6) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed