Skip to main content Accessibility help
×
Home

P031: Using machine learning algorithms for predicting future performance of emergency medicine residents

  • A. Ariaeinejad (a1), R. Patel (a1), T.M. Chan (a1) and R. Samavi (a1)

Abstract

Introduction: Background: Medical education is transitioning from a time-based system to a competency-based framework. In the age of Competency-Based Medical Education, however, there is a drastically increased amount of data that needs to be interpreted. With this data, however, comes an opportunity to develop predictive analytics. Machine learning is a method of data analysis that automates analytical model building. Using algorithms that iteratively learn from data, machine learning allows computers to find hidden insights without being explicitly programmed where to look. Machine learning has been successfully used in other fields to create predictive models. Objective: This study evaluates the application of neural network as a machine learning algorithm in learning from historical data in emergency residency program and predicting future resident performance. Methods: We analyzed performance data for 16 residents (PGY1-5) who were assessed at end of each shift. Performance was graded in each of the CanMEDS Roles with scores from 1 to 7 by different attending physicians who observed residents during the shift. We transformed sequences of scores for each resident to a fixed set of features and combined all of them in one dataset. We considered scores under 6 as “At Risk Resident” and scores 6 or more as “Competent Resident”, and then we separated the dataset into training and testing sets using K-Fold cross validation and trained an artificial Neural Network in order to make decision about the future situation of residents in a specific CanMEDS Role and general performance. Results: We used 5-fold cross validation to evaluate the model, one round of cross-validation involves partitioning the whole data into complementary subsets, performing the training phase on the training set, and validating the analysis on the testing set. To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds. Results of cross validation show that accuracy of model was 72%, sensitivity was 81% and specificity was 43%. Conclusion: Machine learning algorithms such (as Neural Network) have the ability to predict future resident performance on a global level and within specific domains (i.e. CanMEDS roles). Used appropriately, such information may be a valuable for monitoring resident progress.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      P031: Using machine learning algorithms for predicting future performance of emergency medicine residents
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      P031: Using machine learning algorithms for predicting future performance of emergency medicine residents
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      P031: Using machine learning algorithms for predicting future performance of emergency medicine residents
      Available formats
      ×

Copyright

Corresponding author

*Corresponding authors

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed