Skip to main content Accessibility help
×
Home

LO16: Predicting survival from out-of-hospital cardiac arrest

  • I. Drennan (a1), K. Thorpe (a1), S. Cheskes (a1), M. Mamdani (a1), D. Scales (a1) and L. Morrison (a1)...

Abstract

Introduction: Prognostication is a significant challenge early in the post-cardiac arrest period. Common prognostic factors for neurological survival are unreliable (high false positive rates) until 72 hours post-cardiac arrest. It is not known whether there are a combination of factors that can be utilized earlier in the post-cardiac arrest period to accurately predict patient outcome. Our objective was to predict neurological outcome utilizing a novel combination of patient factors early in the post-cardiac arrest period. Methods: We conducted a retrospective cohort study using data from our local cardiac arrest registry. We included adult patients who obtained a return of spontaneous circulation (ROSC) after out-of-hospital cardiac arrest (OHCA). We excluded patients who did not survive for at least 24 hours post-ROSC and those who had a do not resuscitate (DNR) order within 2 hours of ROSC. We performed an ordinal regression analysis using the proportional odds model to predict neurological outcome (modified rankin score (mRS)). We included a good neurological outcome (mRS 0-2), poor neurological outcome (mRS 3-5), and dead (mRS 6) as an ordinal outcome. We included a number of patient demographics, intra- and post-cardiac arrest factors as covariates in our model. The predictive performance of our model was analyzed using receiver operating characteristic (ROC) curves for discrimination and Brier statistic for calibration. Results: We included 3448 patients in our analysis. We found that an initial shockable rhythm (odds ratio (OR) 4.1; 95% confidence interval (CI) 3.6, 5.4), the absence of pupillary reflexes (OR 3.5; 95% CI 2.4,4.8) and maximum motor score on the Glasgow Coma Scale (GCS) (OR 1.5; 95% CI 1.4,1.6) had the greatest association with improved neurologic outcome. Longer duration of resuscitation was associate with worse outcomes (OR 0.84, 95% CI 0.82,0.87). The overall performance of our model was excellent with an area under the ROC curve of 0.89 and a Brier statistic of 0.13. Conclusion: Our model predicted good neurological outcome with a high rate of accuracy, however external validation of the model is required. This model may be useful in providing initial risk stratification of patients in clinical practice and future research on post-cardiac arrest care.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      LO16: Predicting survival from out-of-hospital cardiac arrest
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      LO16: Predicting survival from out-of-hospital cardiac arrest
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      LO16: Predicting survival from out-of-hospital cardiac arrest
      Available formats
      ×

Copyright

Keywords

LO16: Predicting survival from out-of-hospital cardiac arrest

  • I. Drennan (a1), K. Thorpe (a1), S. Cheskes (a1), M. Mamdani (a1), D. Scales (a1) and L. Morrison (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.