Skip to main content Accessibility help
×
Home

2005 emergency cardiovascular care guidelines

  • Michael Shuster (a1)
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      2005 emergency cardiovascular care guidelines
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      2005 emergency cardiovascular care guidelines
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      2005 emergency cardiovascular care guidelines
      Available formats
      ×

Abstract

Copyright

Corresponding author

Mineral Springs Hospital, Box 1050, Banff AB T1L 1H7; mtn1ms@poky.ca

References

Hide All
1.Emergency Cardiovascular Care Committee and Subcommittees of the American Heart Association. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2005;112:IV–1–IV–211.
2.International Liaison Committee on Resuscitation. 2005 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2005;112(suppl III):III–1–III–136.
3.Paradis, NA, Martin, GB, Rivers, EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA 1990;263:1106–13.
4.Kern, KB, Ewy, GA, Voorhees, WD, et al. Myocardial perfusion pressure: a predictor of 24-hour survival during prolonged cardiac arrest in dogs. Resuscitation 1988;16:241–50.
5.Halperin, HR, Tsitlik, JE, Guerci, AD, et al. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs. Circulation 1986;73:539–50.
6.Abella, BS, Alvarado, JP, Myklebust, H, et al. Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 2005;293:305–10.
7.Wik, L, Kramer-Johansen, J, Myklebust, H, et al. Quality of cardiopulmonary resuscitation during out-of-hospital cardiac arrest. JAMA 2005;293:299304.
8.Sanders, AB, Ogle, M, Ewy, GA. Coronary perfusion pressure during cardiopulmonary resuscitation. Am J Emerg Med 1985;3:11–4.
9.Berg, RA, Sanders, AB, Kern, KB, et al. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 2001;104:2465–70.
10.Sanders ABea. Importance of the duration of inadequate coronary perfusion pressure on resuscitation from cardiac arrest. J Am Coll Cardiol 1985;6:113–8.
11.Assar, D, Chamberlain, D, Colquhoun, M, et al. Randomised controlled trials of staged teaching for basic life support, 1: skill acquisition at bronze stage. Resuscitation 2000;45:715.
12.Heidenreich, JW, Higdon, TA, Kern, KB, et alSingle-rescuer cardiopulmonary resuscitation: “two quick breaths” — an oxymoron. Resuscitation 2004;62:283–9.
13.Swenson, RD, Weaver, WD, Niskanen, RA, et al. Hemodynamics in humans during conventional and experimental methods of cardiopulmonary resuscitation. Circulation 1988;78:630–9.
14.Kern, KB, Sanders, AB, Raife, J, et al. A study of chest compression rates during cardiopulmonary resuscitation in humans: the importance of rate-directed chest compressions. Arch Intern Med 1992;152:145–9.
15.Berg, RA, Cobb, LA, Doherty, A, et al. Chest compressions and basic life support-defibrillation. Ann Emerg Med 2001;37(4 suppl):S26–35.
16.Berg, RA, Hilwig, RW, Kern, KB, et al. Automated external defibrillation versus manual defibrillation for prolonged ventricular fibrillation: lethal delays of chest compressions before and after countershocks. Ann Emerg Med 2003;42:458–67.
17.Kern, KB, Hilwig, RW, Berg, RA, et al. Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation 2002;105:645–9.
18.Ewy, GA. Cardiocerebral resuscitation: the new cardiopulmonary resuscitation. Circulation 2005;111:2134–42.
19.Berg, RA, Kern, KB, Hilwig, RW, et al. Assisted ventilation does not improve outcome in a porcine model of single-rescuer bystander cardiopulmonary resuscitation. Circulation 1997;95:1635–41.
20.Berg, RA, Kern, KB, Hilwig, RW, et al. Assisted ventilation during “bystander” CPR in a swine acute myocardial infarction model does not improve outcome. Circulation 1997;96:4364–71.
21.Berg, RA, Hilwig, RW, Kern, KB, et al. “Bystander” chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless “cardiac arrest.” Circulation 2000;101:1743–8.
22.Eftestol, T, Sunde, K, Steen, PA. Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation 2002;105:2270–3.
23.Handley, AJ, Handley, JA. The relationship between rate of chest compression and compression:relaxation ratio. Resuscitation 1995;30:237–41.
24.Feneley, MP, Maier, GW, Kern, KB, et al. Influence of compression rate on initial success of resuscitation and 24 hour survival after prolonged manual cardiopulmonary resuscitation in dogs. Circulation 1988;77:240–50.
25.Sanders, AB, Kern, KB, Berg, RA, et al. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios. Ann Emerg Med 2002;40:553–62.
26.Dorph, E, Wik, L, Stromme, TA, et al. Quality of CPR with three different ventilation:compression ratios. Resuscitation 2003;58:193201.
27.Greingor, JL. Quality of cardiac massage with ratio compression-ventilation 5/1 and 15/2. Resuscitation 2002;55:263–7.
28.Dorph, E, Wik, L, Stromme, TA, et al. Oxygen delivery and return of spontaneous circulation with ventilation:compression ratio 2:30 versus chest compressions only CPR in pigs. Resuscitation 2004;60:309–18.
29.Babbs, CF, Kern, KB. Optimum compression to ventilation ratios in CPR under realistic, practical conditions: a physiological and mathematical analysis. Resuscitation 2002;54:147–57.
30.Dahl, CF, Ewy, GA, Ewy, MD, et al. Transthoracic impedance to direct current discharge: effect of repeated countershocks. Med Instrum 1976;10:151–4.
31.Geddes, LA, Tacker, WA, Cabler, P, et al. The decrease in transthoracic impedance during successive ventricular defibrillation trials. Med Instrum 1975;9:179–80.
32.Bain, AC, Swerdlow, CD, Love, CJ, et al. Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 2001;37:512.
33.Mittal, S, Ayati, S, Stein, KM, et al. Comparison of a novel rectilinear biphasic waveform with a damped sine wave monophasic waveform for transthoracic ventricular defibrillation. ZOLL In-vestigators. J Am Coll Cardiol 1999;34:1595–601.
34.Poole, JE, White, RD, Kanz, KG, et al. Low-energy impedancecompensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. LIFE Investigators. J Cardiovasc Electrophysiol 1997;8:1373–85.
35.Schneider, T, Martens, PR, Paschen, H, et al. Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation 2000;102:1780–7.
36.van Alem, AP, Sanou, BT, Koster, RW. Interruption of cardiopulmonary resuscitation with the use of the automated external defibrillator in out-of-hospital cardiac arrest. Ann Emerg Med 2003;42:449–57.
37.Martens, PR, Russell, JK, Wolcke, B, et al. Optimal Response to Cardiac Arrest study: defibrillation waveform effects. Resuscitation 2001;49:233–43.
38.Carpenter, J, Rea, TD, Murray, JA, et al. Defibrillation waveform and post-shock rhythm in out-of-hospital ventricular fibrillation cardiac arrest. Resuscitation 2003;59:189–96.
39.Gliner, BE, White, RD. Electrocardiographic evaluation of defibrillation shocks delivered to out-of-hospital sudden cardiac arrest patients. Resuscitation 1999;41:133–44.
40.White, RD, Blackwell, TH, Russell, JK, et al. Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator. Resuscitation 2005;64:63–9.
41.Yu, T, Weil, MH, Tang, W, et al. Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation 2002;106:368–72.
42.Weaver, WD, Cobb, LA, Copass, MK, et al. Ventricular defibrillation: a comparative trial using 175-J and 320-J shocks. N Engl JMed 1982;307:1101–6.
43.Eberle, B, Dick, WF, Schneider, T, et al. Checking the carotid pulse check: diagnostic accuracy of first responders in patients with and without a pulse. Resuscitation 1996;33:107–16.
44.Moule, P. Checking the carotid pulse: diagnostic accuracy in students of the healthcare professions. Resuscitation 2000;44:195201.
45.Eftestol, T, Wik, L, Sunde, K, Steen, PA. Effects of cardiopulmonary resuscitation on predictors of ventricular fibrillation defibrillation success during out-of-hospital cardiac arrest. Circulation 2004: 01.CIR.0000133323.15565.75.
46.Hess, E, White, R. Ventricular fibrillation is not provoked by chest compression during post-shock organized rhythms in out-of-hospital cardiac arrest. Resuscitation 2005;66:711.
47.Aung, K, Htay, T. Vasopressin for cardiac arrest: a systematic review and meta-analysis. Arch Intern Med 2005;165:1724.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed