Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-04T05:42:14.811Z Has data issue: false hasContentIssue false

VULNERABILITY OF THE FIR CONEWORM, DIORYCTRIAABIETIVORELLA (GROTE) (LEPIDOPTERA: PYRALIDAE), IN DIFFERENT LARVAL STAGES TO THE HD-1 STRAIN OF BACILLUS THURINGIENSIS

Published online by Cambridge University Press:  31 May 2012

Richard Trudel
Affiliation:
Centre de Recherche en Biologie Forestière, Département de Foresterie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Éric Bauce
Affiliation:
Centre de Recherche en Biologie Forestière, Département de Foresterie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Jean Cabana
Affiliation:
Centre de Recherche en Biologie Forestière, Département de Foresterie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4
Claude Guertin
Affiliation:
Centre de Recherche en Biologie Forestière, Département de Foresterie, Université Laval, Sainte-Foy, Québec, Canada G1K 7P4

Extract

The fir coneworm, Dioryctria abietivorella (Grote), is a major insect pest in seed orchards across Canada and the adjoining eastern and western United States. Larvae feed principally on cones, but they can also feed on needles and occasionally on the bark of young tree trunks (Hedlin et al. 1980; Ruth 1980; Martineau 1985). The potential for a population of D. abietivorella to build up in seed orchards may be greater than in natural stands (Hedlin et al. 1980; Ruth et al. 1982). The use of entomopathogen in the management of fir coneworm could be an adequate measure to reduce the impact of this insect. Moreover, Bacillus thuringiensis ssp. kurstaki has a specific effect on Lepidoptera (Aronson et al. 1986; Gill et al. 1992). The purpose of our study was to determine the activity of the HD-1 strain of B. thuringiensis ssp. kurstaki (serotype H-3a:3b) to larvae D. abietivorella. Bioassays were conducted with first-, third-, and fifth-instar larvae of fir coneworm to determine whether or not the insect's vulnerability to B. thuringiensis varies with larval age.

Type
Note
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, T.A. 1962. The Biochemistry and Mode of Action of Bacillus thuringiensis Ber. and its Varieties. Sault Ste. Marie, Insect Pathology Research Institute Contribution 37.Google Scholar
Aronson, A.I., Beckman, W., and Dunn, P.. 1986. Bacillus thuringiensis and related insect pathogens. Microbiological Review 50: 124.CrossRefGoogle ScholarPubMed
Berkson, J. 1953. A statistically precise and relatively simple method of estimating the bioassay with quantal response, based on the logistic function. Journal of the American Statistic Association 48: 565589.Google Scholar
Beegle, C.C., Lewis, L.C., Lynch, R.E., and Martinez, A.J.. 1981. Interaction of larval age and antibiotic on the susceptibility of three insect species to Bacillus thuringiensis. Journal of Invertebrate Pathology 37: 143153.CrossRefGoogle Scholar
Dubois, N.R., and Lewis, F.B.. 1981. What is Bacillus thuringiensis. Journal of Arboriculture 7: 233240.Google Scholar
Dulmage, H.T., Boening, O.P., Rehnborg, C.S., and Hansen, G.D.. 1971. A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. Journal of Invertebrate Pathology 18: 240245.CrossRefGoogle ScholarPubMed
Gill, S.S., Cowles, E.A., and Pietrantonio, P.V.. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annual Review of Entomology 37: 615636.CrossRefGoogle ScholarPubMed
Hedlin, F.A., Yates, H.O. III, Tovar, D.C., Ebel, B.H., Koerber, T.W., and Merkel, E.P.. 1980. Cone and Seed Insects of North American Conifers. Canadian Forestry Service, Ottawa, Ontario; USDA Forest Service, Washington, DC; and Secretaria de Agricultura Rercursos Hidraulicos, Mexico. pp. 7880.Google Scholar
Martineau, R. 1985. Les insectes nuisibles des forêts de l'est du Canada. Edité par Marcel Broquet Inc. Ministère des Approvisionnements et Services Canada 2–89000–141–5: 283 pp.Google Scholar
Moar, W.J., Pusztai-Carey, M., and Mack, T.P.. 1995. Toxicity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 88: 606609.CrossRefGoogle Scholar
Ruth, D.S. 1980. A Guide to Insect Pests in Douglas-fir Seed Orchards. Canadian Forestry Service, Pacific Forest Research Centre, Victoria B.C.: BC–X–204.Google Scholar
Ruth, D.S., Miller, G.E., and Sutherland, J.R.. 1982. A Guide to Insect Pests and Diseases in Spruce Seed Orchards in British Columbia. Environment Canada, Canadian Forestry Service, Pacific Forest Research Centre, Victoria B.C. BC–X–231: 27 pp.Google Scholar
Trudel, R., Bauce, É., Cabana, J., and Guertin, C.. 1995. Rearing technique for Dioryctria abietivorella (Lepidoptera: Pyralidae). Journal of Economic Entomology 88: 640643.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics, Version 5. SAS Institute, Cary, NC.Google Scholar
van Frankenhuyzen, K., Milne, R., Rousseau, R., and Masson, L.. 1992. Comparative toxicity of the HD-1 and NRD-12 strains of Bacillus thuringiensis subsp. kurstaki to defoliating forest Lepidoptera. Journal of Invertebrate Pathology 59: 149154.CrossRefGoogle ScholarPubMed