Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T12:45:32.987Z Has data issue: false hasContentIssue false

A TEMPERATURE- AND AGE-DEPENDENT SIMULATION MODEL OF REPRODUCTION FOR THE NORTHERN CORN ROOTWORM, DIABROTICA BARBERI SMITH AND LAWRENCE (COLEOPTERA: CHRYSOMELIDAE)

Published online by Cambridge University Press:  31 May 2012

Steven E. Naranjo
Affiliation:
Department of Entomology, Cornstock Hall, Cornell University, Ithaca, New York, USA 14853
Alan J. Sawyer
Affiliation:
Department of Entomology, Cornstock Hall, Cornell University, Ithaca, New York, USA 14853

Abstract

Based on data collected at seven constant temperatures, a temperature- and age-dependent model for reproductive development and oviposition by Diabrotica barberi Smith and Lawrence was developed. The model couples temperature-dependent rate and temperature-independent distribution models to represent the observed variability in developmental times for pre-reproductive, reproductive, and post-reproductive females. Using a cohort approach to maintain a physiological age structure, development was coupled with a temperature- and age-dependent model of oviposition. The model was validated at one constant-temperature and three variable-temperature regimes in the laboratory. The time spent in the pre-reproductive stage was slightly underestimated by the model, but the development of mature females and both the timing and magnitude of oviposition under fluctuating-temperature regimes were accurately predicted. The model was relatively insensitive to errors in estimation of the rate of development in the pre-reproductive stage but sensitive to errors in estimation of developmental rate of the reproductive stage and fecundity. Errors in input temperatures were found to be very important, stressing the need for accurately measuring temperature, The major driving variable. The model should be a valuable aid toward understanding oviposition by D. barberi in the field.

Résumé

On a développé un modèle dépendant de l’âge et de la température pour le développement reproducteur et l’oviposition des Diabrotica barberi Smith and Lawrence à partir de données obtenues à sept températures constantes. Le modèle relie le modèle du taux dépendant de la température et le modèle de distribution indépendant de la température afin de représenter la variabilité observée dans les temps de développement de femelles pré-reproductrices, reproductrices et post-reproductrices. En utilisant un système cohorte maintenant une structure d’âge physiologique, ce dévelopement a été relié à un modèle d’oviposition dépendant de la température et de l’âge. Au laboratoire, le modèle a été validé à une température constante et à trois régimes des températures variables. Le temps passé sur le stade pré-reproducteur a été légèrement sous-estimé par le modèle mais le développement des femelles mûres ainsi que le minutage et la magnitude de l’oviposition soumis à des régimes de températures fluctuantes ont été tous les deux prédits sans erreurs. Le modèle a été plus ou moins insensible aux erreurs d’estimation du taux de développement pour le stade pré-reproducteur et la fécondité. On a trouvé que les erreurs dans les températures d’entrée avaient des conséquences importantes, renforçant l’importance des mesures exactes des températures, celles-ci étant la variable conductrice majeure. Le modèle devrait aider d’une manière significative à comprendre l’oviposition des D. barberi sur le terrain.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Branson, T.F., and Krysan, J.L.. 1981. Feeding and oviposition behavior and life cycle strategies of Diabrotica: an evolutionary view with implications for pest management. Environ. Ent. 10: 826831.CrossRefGoogle Scholar
Conover, W.J. 1980. Practical Nonparametric Statistics, 2nd ed. John Wiley and Sons, New York.Google Scholar
Curry, G.L., Feldman, R.M., and Sharpe, P.J.H.. 1978 a. Foundations of stochastic development. J. Theor. Biol. 74: 397410.CrossRefGoogle ScholarPubMed
Curry, G.L., Feldman, R.M., and Smith, K.C.. 1978 b. A stochastic model of a temperature dependent population. Theor. Pop. Biol. 13: 197213.CrossRefGoogle ScholarPubMed
Engelmann, F. 1970. The Physiology of Insect Reproduction. Pergamon Press, New York.Google Scholar
Foster, R.E., Tollefson, J.J., Nyrop, J.P., and Hein, G.L.. 1986. Value of adult corn rootworm population estimates in pest management decision making. J. econ. Ent. 79: 303309.CrossRefGoogle Scholar
Harrison, S.R., Fick, G.W., and McCulloch, C.E.. 1987. Statistical validation of simulation models. In Shoemaker, C.A. (Ed.), Insect Pest Management Modeling. Wiley Interscience, New York. In press.Google Scholar
Logan, J.A., and Amman, G.D.. 1986. A distribution model for egg development in mountain pine beetle. Can. Ent. 118: 361372.CrossRefGoogle Scholar
Luckmann, W.H. 1978. Insect control in corn; practices and prospects. pp. 137155in Smith, E.H., and Pimentel, D. (Eds.), Pest Control Strategies. Academic Press, New York.CrossRefGoogle Scholar
Metcalf, R.L. 1985. Forward. In Krysan, J.L., and Miller, T.A. (Eds.), Methods for the Study of Pest Diabrotica. Springer-Verlag, New York.Google Scholar
Naranjo, S.E. 1987. Population dynamics and oviposition of the northern corn rootworm, Diabrotica barberi: significance of host plant phenology. Ph.D. dissertation, Cornell Univ., Ithaca, New York.Google Scholar
Naranjo, S.E., and Sawyer, A.J.. 1987. Repreductive biology and survival of Diabrotica barberi (Coleoptera: Chrysomelidae): effect of temperature, food, and seasonal time of emergence. Ann. ent. Soc. Am. 80: 841848.CrossRefGoogle Scholar
Pinder, J.E. III, Wiener, J.G., and Smith, M.H.. 1978. The Weibull distribution: a new method of summarizing survivorship data. Ecology 59: 175179.CrossRefGoogle Scholar
Regnière, J. 1984. A method of describing and using variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.CrossRefGoogle Scholar
SAS Institute. 1985. SAS User's Guide: Statistics. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88: 719731.CrossRefGoogle ScholarPubMed
Shaffer, P.L. 1983. Prediction of variation in development period of insects and mites reared at constant temperatures. Environ. Ent. 12: 10121019.CrossRefGoogle Scholar
Shaffer, P.L., and Gold, H.J.. 1985. A simulation model of population dynamics of the codling moth Cydia pomonella. Ecol. Modelling 30: 247274.CrossRefGoogle Scholar
Sharpe, P.J.H., Curry, G.L., DeMichele, D.W., and Cole, C.L.. 1977. Distribution model of organism development times. J. Theor. Biol. 66: 2138.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64: 649670.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., Schoolfield, R.M., and Butler, G.D. Jr., 1981. Distribution model of Heliothis zea developmental times. Can. Ent. 113: 845856.CrossRefGoogle Scholar
Stamm, D.E., Mayo, Z.B., Campbell, J.B., Witkowski, J.F., Anderson, W., and Kozub, R.. 1985. Western corn rootworm (Coleoptera: Chyrsomelidae) beetle counts as a means of making larval control recommendations in Nebraska. J. econ. Ent. 78: 794798.CrossRefGoogle Scholar
Stinner, R.E., Butler, G.D. Jr., Batcheler, J.S., and Tuttle, C.. 1975. Simulation of temperature-dependent development in population dynamics models. Can. Ent. 107: 11671174.CrossRefGoogle Scholar
Turpin, F.T., Dumenil, L.C., and Peters, D.C.. 1972. Edaphic and agronomic characters that affect potential for rootworm damage to corn in Iowa. J. econ. Ent. 65: 16151619.CrossRefGoogle Scholar
Turpin, F.T., and Maxwell, J.D.. 1976. Decision-making related to use of soil insecticides by Indiana corn farmers. J. econ. Ent. 69: 359362.CrossRefGoogle Scholar
Wagner, T.L., Wu, H.I., Sharpe, P.J.H., and Coulson, R.N.. 1984. Modeling distributions of insect development time: a literature review and application of the Weibull function. Ann. ent. Soc. Am. 77: 475487.CrossRefGoogle Scholar
Wilkerson, G.G., Mishoe, J.W., and Stimac, J.L.. 1986. Modeling velvetbean caterpillar (Lepidoptera: Noctuidae) population in soybeans. Environ. Ent. 15: 809816.CrossRefGoogle Scholar