Skip to main content Accessibility help


  • O. N. Morris (a1)


The effectiveness of several commercially available sunlight screens in protecting Bacillus thuringiensis Berliner (B.t.) against inactivation by solar irradiation was assessed in the laboratory and field. Spore viability and residual insecticidal activity of B.t. were rapidly reduced by solar radiation in the range of 300 to 400 nm wavelength. The addition of ultraviolet absorbers, Uvinul DS49 and Erio Acid Red, to a Thuricide spray formulation prolonged the insecticidal residual activity on coniferous trees, resulting in greater effectiveness against the spruce budworm, Choristoneura fumiferana (Clem.), compared with a formulation lacking these protectants.

On a conçu des expériences en vue de tester la protection conférée par plusieurs écrans solaires vendus sur le marché contre l'inactivation rapide des préparations commerciales de Bacillus thuringiensis Berliner (B.t.) par la lumière solaire. Le rayonnement solaire de 300 à 400 nm a rapidement réduit la viabilité des spores ainsi que l'activité insecticide résiduelle du B.t. L'ajout d'absorbeurs d'U.-V. (Uvinul DS49, rouge acide Erio et mélasse) à une préparation de B.t. à pulvériser peut prolonger son activité insecticide résiduelle sur les conifères et accroître son efficacité antitordeuse.



Hide All
Ahmed, S. M., Nagamma, M. V., and Majumdar, S. I.. 1973. Studies on granular formulations of Bacillus thuringiensis Berliner. Pestic. Sci. 4: 1923.
Andrews, R. E., Parks, L. W., and Spence, K. D.. 1980. Some effects of Douglas fir terpenes on certain microorganisms. Appl. environ. Microbiol. 40: 301304.
Beegle, C. C., Dulmage, H. T., Wolfenbarger, D. A., and Martinez, E.. 1981. Persistence of Bacillus thuringiensis Berliner insecticidal activity on cotton foliage. Environ. Entomol. 10: 400401.
Brand, R. J., Pinnock, D. E., Jackson, K. L., and Milstead, J. E.. 1975. Methods for assessing field persistence of Bacillus thuringiensis spores. J. invert. Path. 25: 199208.
Burges, N. D., Hillyer, S., and Chanter, D. O.. 1975. Effect of ultraviolet and gamma rays on the activity of delta endotoxin protein crystals of Bacillus thuringiensis. J. invert. Path. 25: 59.
Burges, H. D. and Thompson, E. M.. 1971. Standardization and assay of microbial insecticides. pp. 591622in Burges, H. D. and Hussay, N. W. (Eds), Microbial Control of Insects and Mites. Academic Press, N.Y.
Cantwell, G. E. 1967. Inactivation of biological insecticides by radiation. J. invert. Path. 9: 138140.
Cavalcaselle, B. 1976. Valutazione dell'efficacia di due preparati commerciali a base di Bacillus thuringiensis nella lotta contro la Processionaria del Pino. Cellulose et Carta 37: 2126.
Finney, D. J. 1971. Probit Analysis, 3rd ed. Cambridge Univ. Press, Cambridge, U.K.333 pp.
Franz, J. M. 1971. Influence of environment and modem trends in crop management on microbial control. pp. 407444in Burges, H. D. and Hussay, N. W. (Eds.), Microbial Control of Insects and Mites. Academic Press, N.Y.
Fujioka, R. S., Hashimoto, H. H., Siwak, E. B., and Young, R. H. F.. 1981. Effect of sunlight on survival of indicator bacteria in sea water. Appl. environ. Microbiol. 41: 690696.
Fuxa, J. R. and Brooks, W. M.. 1978. Persistence of spores of Vairimorpha necatrix on tobacco, cotton, and soybean foliage. J. econ. Ent. 71: 169172.
Gardner, W. A., Sutton, R. M., and Noblet, R.. 1977. Persistence of Beauveria bassiana, Nomuraea rileyi, and Nosema necatrix on soybean foliage. Environ. Ent. 6: 616618.
Griego, V. M. and Spence, K. D.. 1978. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl. environ. Microbiol. 35: 906910.
Hollander, A. 1943. Effect of long ultraviolet and short visible radiation (3500–4900 A) on Escherichia coli. J. Bacteriol. 46: 531541.
Hostetter, D. L., Ignoffo, C. M., and Kearby, W. H.. 1975. Persistence of formulations of Bacillus thuringiensis spores and crystals on eastern red cedar foliage in Missouri. J. Kans. Ent. Soc. 48: 189193.
Ignoffo, C. M. and Couch, T. L.. 1981. The nucleopolyhedrosis virus of Heliothis species as a microbiol insecticide. pp. 329362in Burges, H. D. (Ed.), Microbiol Control of Insects and Mites. Academic Press, N.Y.
Ignoffo, C. M. and Hostetter, D. L.. 1977. Summary. In Environmental Stability of Microbiol Insecticides. Misc. Publs ent. Soc. Am. 10: 117119.
Jagger, J. 1967. Introduction to Research in Ultraviolet Photobiology. Prentice Hall, N.J.164 pp.
Jaques, R. P. 1972. The inactivation of foliar deposits of viruses of Trichoplusia ni (Lepidoptera: Noctuidae) and Pieris rapae (Lepidoptera: Pieridae) and test on protectant additives. Can. Ent. 104: 19851994.
Jaques, R. P. 1977. Stability of entomopathogenic viruses. Misc. Publs. ent. Soc. Am. 10: 99116.
Johnson, F. S. 1976. Average latitudinal variation in ultraviolet radiation at the earth's surface. Photochem. Photobiol. 23: 179188.
Kaya, H. K. 1977. Survival of spores of Vairimorpha (Nosema) necatrix (Microsporida: Nosematidae) exposed to sunlight, ultraviolet radiation, and high temperature. J. invert. Path. 30: 192198.
Kearby, W. H., Hostetter, D. L., and Ignoffo, C. M.. 1972. Laboratory and field evaluation of Bacillus thuringiensis for control of bagworm. J. econ. Ent. 65: 477480.
Kelley, J. F. and Anthony, D. W.. 1979. Susceptibility of spores of the microsporidian Nosema algerae to sunlight and germicidal ultraviolet radiation. J. invert. Path. 34: 164169.
Kleczowski, A. 1967. Effects of ionizing radiation on viruses. Adv. Virus Res. 4: 191200.
Leong, K. L. H., Kano, R. J., and Kubinski, A. M.. 1980. Factors affecting Bacillus thuringiensis total field persistence. Environ. Ent. 9: 593599.
Maddox, J. V. 1977. Stability of entomopathogenic protozoa. Misc. Publs. ent. Soc. Am. 10: 318.
Moore, A. and Morris, O. N.. 1982. An improved technique for dosing larvae of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) with measured quantities of Bacillus thuringiensis var. kurstaki. Can. Ent. 114: 8991.
Morris, O. N. 1972. Inhibitory effects of foliage extracts of some forest trees on commercial Bacillus thuringiensis. Can. Ent. 104: 13571361.
Morris, O. N. 1977. Long-term study of the effectiveness of Bacillus thuringiensis – acephate combinations against the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 109: 12391248.
Morris, O. N. 1980. Report of the 1979 CANUSA Bacillus thuringiensis (B.t.) spray trials. For. pest Mangt. Inst., Can. For Serv. Rep. FPM-X-40.
Morris, O. N., Armstrong, J. A., and Hilebrand, M. J.. 1977. Aerial field trials with a new formulation of Bacillus thuringiensis against the spruce budworm, Choristoneura fumiferana (Clem.). Chem. Control Res. inst., Can. For. Serv. Rep. CC-X-144. 26 pp.
Morris, O. N. and McErlane, B.. 1975. Studies on the protection of insect pathogens from sunlight inactivation. I. Preliminary laboratory tests. Chem. Control Res. Inst., Can. For. Serv. Rep. CC-X-112. 45 pp.
Morris, O. N. and Moore, A.. 1975. Studies on the protection of insect pathogens from sunlight inactivation. II. Preliminary field trials. Chem. Control Res. Inst., Can. For. Serv. Rep. CC-X-113. 33 pp.
Pinnock, D. E., Brand, R. J., and Milstead, J. E.. 1971. The field persistence of Bacillus thuringiensis spores. J. invert. Path. 18: 405511.
Pinnock, D. E., Brand, R. J., Jackson, K. L., and Milstead, J. E.. 1974. The field persistence of Bacillus thuringiensis spores on Cercis occidentalis leaves. J. invert. Path. 23: 341346.
Raum, E. S. and Jackson, R. D.. 1966. Encapsulation as a technique for formulating microbiol and chemical insecticides. J. econ. Ent. 59: 620622.
Roberts, T. A. and Hutchins, A. D.. 1966. Resistance of spores. pp. 611670in Gould, G. W. aad Hurst, A. (Eds), The Bacterial Spores. Academic Press, N.Y.
Roberts, W. D. and Campbell, A. S.. 1977. Stability of entomopathogenic fungi. Misc. Publs. ent. Soc. Am. 10: 1976.
Seliger, H. H. and McElroy, W. D.. 1965. Light: Physical and Biological Action. Academic Press, N.Y.
Setlow, J. K. 1966. Photoreactivation. Radiat. Res. Suppl. 6: 141155.
Sikorowski, R. P. and Lashomb, J. H.. 1977. Effect of sunlight on the infectivity of Nosema heliothidis spores isolated from Heliothis zea. J. invert. Path. 30: 9596.
Sneh, B. and Schuster, S.. 1981. Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis previously fed B. thuringiensis treated leaves. J. invert. Path. 37: 295305.
Spikes, J. D. and Ghiron, C. A.. 1964. Photodynamic effects of biological systems. pp. 309338in Augenstein, L., Mason, R., and Rosenberg, B. (Eds.), Physical Processes in Radiation Biology. Academic Press, N.Y.
Steel, R. G. D. and Torrie, J. H.. 1970. Principles and Procedures of Statistics. McGraw Hill, N.Y.
Svestka, M. 1974. The use of Bacillus thuringiensis for the biological control of leaf-eating pests of flood-plain forests in S. Moravia. Lesnicti 20: 439464.
Thomas, W. G. 1966. Protection of cosmetic colors by means of UV absorbers. J. Soc. Cosmetic Chemists 17: 553570.
Vankova, J. and Svestka, M.. 1976. Persistenz und Wirksamkeit von Bacillus thuringiensis – Preparaten in Freilandversuchen. Anz. Schädlingsk. Pflanz. Umwelts. 49: 3338.
Webb, S. J. 1961. Factors affecting the viability of airborne bacteria. IV. The inactivation and reactivation of airborne Serratia marcescens by ultraviolet and visible light. Can. J. Microbiol 7: 607619.
Webb, S. J. 1963. The effect of relative humidity and light on air-dried organisms. J. appl. Bact. 26: 307313.
Webb, S. J. and Tai, C. C.. 1969. Physiological and genetic implication of selective mutation by light at 320–400 μm. Nature 224: 11231125.


  • O. N. Morris (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed