Skip to main content Accessibility help
×
Home

Performance of the specialist herbivore Plutella xylostella (Lepidoptera: Plutellidae) on Brassicaceae and non-Brassicaceae species

  • R.M. Sarfraz (a1), L.M. Dosdall (a2) and B.A. Keddie (a3)

Abstract

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is considered oligophagous on Brassicaceae. We determined the preferences and performance of P. xylostella on canola, Brassica napus L., and flixweed, Descurainia sophia (L.) Webb ex Prantl (Brassicaceae), spider-plant, Cleome hassleriana Chod. (Capparaceae), and garden nasturtium, Tropaeolum majus L. (Tropaeolaceae). Females deposited most eggs on B. napus; T. majus was least preferred. The rate of survival from neonate to pupa was highest on B. napus followed by C. hassleriana, T. majus, and D. sophia. The rate of development of female larvae on Brassicaceae was similar to that on non-Brassicaceae; pupal development was slowest on non-hosts. Female pupae were heaviest on B. napus and lightest on D. sophia. Adult females were heaviest when reared on B. napus and lightest on T. majus and D. sophia. Females reared on D. sophia had the smallest forewings; forewing areas for females on other plants were similar. Females reared on B. napus and C. hassleriana lived longer without food than those reared on D. sophia or T. majus. Males reared on T. majus lived for the shortest time without food. This specialist herbivore can exploit a range of food plants, including suboptimal Brassicaceae and species from other families. This trait appears to facilitate survival and reproduction of P. xylostella when preferred food plants are limiting or absent.

La fausse teigne des crucifères, Plutella xylostella (L.) (Lepidoptera: Plutellidae), est considérée comme un oligophage des Brassicaceae. Nous avons déterminé les préférences et la performance de P. xylostella sur Brassica napus L. et Descurainia sophia (L.) Webb ex Prantl (Brassicaceae), sur Cleome hassleriana Chod. (Capparaceae) et sur Trapaeolum majus L. (Tropaeolaceae). Les femelles déposent un maximum d'oeufs sur les plants de B. napus et montrent le moins de préférence pour les plants de T. majus. La survie de la naissance à la nymphose est la plus importante sur B. napus, puis chez C. hassleriana, T. majus et D. sophia. Le développement larvaire des femelles est semblable chez les Brassicaceae et les non Brassicaceae; le développement nymphal est le plus lent chez les plants non hôtes. Les nymphes femelles sont les plus lourdes sur B. napus et les plus légères sur D. sophia. Les femelles adultes sont les plus lourdes lorsqu’élevées sur B. napus et les plus légères sur T. majus et D. sophia. Les femelles élevées sur D. sophia ont la surface de l'aile antérieure la plus petite; les surfaces des ailes antérieures sont semblables chez les femelles provenant des autres plantes. Les femelles élevées sur B. napus et C. hassleriana survivent plus longtemps à jeun que celles gardées sur D. sophia ou T. majus. Les mâles élevées sur T. majus survivent le moins longtemps sans nourriture. Cet herbivore spécialisé peut exploiter une gamme de plantes nourricières, y compris les espèces suboptimales de Brassiceae et des espèces d'autres familles. Cette caractéristique semble faciliter la survie et la reproduction de P. xylostella lorsque les plantes nourricières préférées sont limitantes ou absentes.

[Traduit par la Rédaction]

Copyright

Corresponding author

1 Corresponding author (e-mail: lloyd.dosdall@ualberta.ca).

References

Hide All
Anonymous. 2006. Wildflowers of eastern North America [online]. Available from http://www.nearctica.com/flowers/bandc/Cspino.htm [accessed 31 May 2009].
Armbruster, P., and Hutchinson, R.H. 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). Journal of Medical Entomology, 39: 669704.
Barker, J.E., Futon, A., Evans, K.A., and Powell, G. 2006. The effects of kaolin particle film on Plutella xylostella behaviour and development. Pest Management Science, 62: 498504. PMID: 16602083 doi:10.1002/ps.1191.
Begum, S., Tsukuda, R., Fujisaki, K., and Nakasuji, F. 1996. The effects of wild cruciferous host plants on morphology, reproductive performance and flight activity in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Researches on Population Ecology, 38: 257263. doi:10.1007/BF02515735.
Bernays, E.A., and Chapman, R.F. 1994. Evolution of host range. In Host-plant selection by phytophagous insects. Contemporary topics in entomology 2. Edited by Bernays, E.A. and Chapman, R.F.. Chapman and Hall, New York. pp. 258287.
Bernays, E.A., and Graham, M. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology, 69: 886892. doi:10.2307/1941237.
Camara, M.D. 1997. A recent host range expansion in Junonia coenia Hübner (Nymphalidae): oviposition preference, survival, growth, and chemical defense. Evolution, 51: 873884. doi:10.2307/2411162.
Canola Council of Canada. 2006. Canadian canola industry [online]. Available from http://www.canolacouncil.org/ind_overview.aspx [accessed 7 November 2009].
Evenden, M.L., Lopez, M.S., and Keddie, B.A. 2006. Body size, age, and disease influence female reproductive performance in Choristoneura conflictana (Lepidoptera: Tortricidae). Annals of the Entomological Society of America, 99: 837844. doi:10.1603/0013-8746(2006)99[837:BSAADI]2.0.CO;2.
Foster, C. 2001. Great annuals: from bud to seed. Conran Octopus Ltd., London, United Kingdom.
Fraser, S.M., and Lawton, J.H. 1994. Host range expansion by British moths onto introduced conifers. Ecological Entomology, 19: 127137. doi:10.1111/j.1365-2311.1994.tb00402.x.
Fry, J.D. 1990. Trade-offs in fitness on different hosts: evidence from a selection experiment with a phytophagous mite. The American Naturalist, 136: 569580. doi:10.1086/285116.
Gould, F. 1979. Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution, 33: 791802. doi:10.2307/2407646.
Gupta, P.D., and Thorsteinson, A.J. 1960 a. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). I. Gustation and olfaction in relation to botanical specificity of larvae. Entomologia Experimentalis et Applicata, 3: 241250. doi:10.1007/BF00301510.
Gupta, P.D., and Thorsteinson, A.J. 1960 b. Food plant relationship of diamondback moth (Plutella maculipennis (Curt.)). II. Sensory regulation of oviposition of the adult female. Entomologia Experimentalis et Applicata, 3: 305314.
Harcourt, D.G. 1957. Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in eastern Ontario. II. Life-history, behaviour, and host relationship. The Canadian Entomologist, 12: 554564.
Heywood, V.H. 1993. Flowering plants of the world. Oxford University Press, New York.
Hillyer, R.J., and Thorsteinson, A.J. 1969. The influence of the host plant or males on ovarian development or oviposition in the diamondback moth, Plutella maculipennis (Curt.). Canadian Journal of Zoology, 47: 805816. doi:10.1139/z69-139.
Hsiao, T.H. 1978. Host plant adaptations among geographic populations of the Colorado potato beetle. Entomologia Experimentalis et Applicata, 24: 237247. doi:10.1007/BF02385096.
Idris, A.B., and Grafius, E. 1996. Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutelliade) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology, 25: 825833.
Kjaer, A. 1974. The natural distribution of glucosinolates: a uniform group of sulfur-containing glucosides. In Chemistry in Botanical Classification: Proceedings of the 25th Nobel Symposium, 20–25 August 1973, Södergarn, Lidingö, Sweden. Edited by Bendz, G. and Santesson, J.. Nobel Foundation, Stockholm, Sweden, and Academic Press, London, United Kingdom. pp. 229234.
Littell, R.C., Stroup, W.W., and Freund, R.J. 2002. SAS® for linear models. 4th ed. SAS Institute Inc., Cary, North Carolina.
Löhr, B., and Gathu, R. 2002. Evidence of adaptation of diamondback moth, Plutella xylostella (L.), to pea, Pisum sativum L. Insect Science and its Application, 22: 161174.
Marazzi, C., Patrian, B., and Städler, E. 2004. Secondary metabolites of the leaf surface affected by sulfur fertilization and perceived by the diamondback moth. Chemoecology, 14: 8186. doi:10.1007/s00049-003-0264-y.
Mithen, R. 1992. Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica, 63: 7183. doi:10.1007/BF00023913.
Mitich, L.W. 1996. Intriguing world of weeds: flixweed (Descurainia sophia). Weed Technology, 10: 974977.
Morishita, D.W. 1991. Dalmatian toadflax, yellow toadflax, black henbane, and tansy mustard: importance, distribution and management. In Noxious range weeds. Edited by James, L.F., Evans, J.O., Ralphs, M.H., and Child, R.D.. Westview Press, Boulder, Colorado.
Muhamad, O., Tsukuda, R., Oki, Y., Fujisaki, K., and Nakasuji, F. 1994. Influences of wild crucifers on life history traits and flight ability of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Researches on Population Ecology, 36: 5362. doi:10.1007/BF02515085.
Pittendrigh, B.R., and Pivnick, K.A. 1993. Effects of a host plant, Brassica juncea, on calling behaviour and egg maturation in the diamondback moth, Plutella xylostella. Entomologia Experimentalis et Applicata, 68: 117126. doi:10.1007/BF02380530.
Price, P.W., Bouton, C.E., Gross, P., McPheron, B.A., Thompson, J.N., and Weis, A.E. 1980. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11: 4165. doi:10.1146/annurev.es.11.110180.000353.
Rausher, M.D. 1982. Population differentiation in Euphdryas editha butterflies: larval adaptation to different hosts. Evolution, 36: 581590. doi:10.2307/2408102.
Renwick, J.A.A., and Lopez, K. 1999. Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates? Entomologia Experimentalis et Applicata, 91: 5158. doi:10.1046/j.1570-7458.1999.00465.x.
Renwick, J.A.A., and Radke, C.D. 1990. Plan constituents mediating oviposition by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Phytophaga, 3: 3746.
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2006 Diamondback moth – host plant interactions: implications for pest management. Crop Protection, 25: 625639. doi:10.1016/j.cropro.2005.09.011.
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2007 Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (L.) (Lepidoptera: Plutellidae). Journal of Economic Entomology, 100: 215224. PMID:17370831 doi:10.1603/0022-0493(2007)100[215:ROSCBT]2.0.CO;2.
Sarfraz, M., Dosdall, L.M., and Keddie, B.A. 2009 Fitness of the parasitoid Diadegma insulare is affected by its host's food plants. Basic and Applied Ecology, 10: 563572. doi:10.1016/j.baae. 2009.01.006.
SAS Institute Inc. 2004. SAS user's guide: statistics. SAS Institute Inc., Cary, North Carolina.
Scriber, J.M., and Slansky, F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology, 26: 183211. doi:10.1146/annurev. en.26.010181.001151.
Shelton, A.M., Cooley, R.J., Kroening, M.K., Wilsey, W.T., and Eigenbrode, S.D. 1991. Comparative analysis of two rearing procedures for diamondback moth (Lepidoptera: Plutellidae). Journal of Entomological Science, 26: 1726.
Singer, M.C., Thomas, C.D., and Parmesan, C. 1993. Rapid human-induced evolution of insect–host association. Nature (London), 366: 681683. doi:10.1038/366681a0.
Stephens, J.M. 2003. Garden nasturtium, Tropaeolum majus L. [online]. Available from http://edis.ifas.ufl.edu/document_mv099 [accessed 31 May 2009].
Talekar, N.S., and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology, 38: 275301. doi:10.1146/annurev.en.38.010193.001423.
Thomas, C.D., Ng, D., Singer, M.C., Mallet, J.L.B., Parmesan, C., and Billington, H.L. 1987. Incorporation of European weed into the diet of a North American herbivore. Evolution, 41: 892901. doi:10.2307/2408897.
Thompson, J.N. 1988. Variation in preference and specificity in monophagous and oligophagous swallowtail populations. Evolution, 42: 118128. doi:10.2307/2409120.
Thorsteinson, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Canadian Journal of Zoology, 31: 5272. doi:10.1139/z53-006.
van Loon, J.J.A., Wang, C.Z., Nielsen, J.K., Gols, R., and Qiu, Y.T. 2002. Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: chemoreception and behaviour. Entomologia Experimentalis et Applicata, 104: 2734. doi:10.1046/j.1570-7458.2002.00987.x.
White, R.R. 1987. The trouble with butterflies. Journal of Research on the Lepidoptera, 25: 207212.
Williams, I.S. 1999. Slow-growth, high-mortality — a general hypothesis, or is it? Ecological Entomology, 24: 490495. doi:10.1046/j.1365-2311.1999.00217.x.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed