Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T15:09:03.359Z Has data issue: false hasContentIssue false

Orientation response of Pacific coast wireworm (Coleoptera: Elateridae) to food baits in laboratory and effectiveness of baits in field

Published online by Cambridge University Press:  31 May 2012

David R. Horton*
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington, United States 98951
Peter J. Landolt
Affiliation:
USDA-ARS, 5230 Konnowac Pass Road, Wapato, Washington, United States 98951
*
1 Corresponding author (e-mail: Horton@yarl.ars.usda.gov).

Abstract

Assays were done in the laboratory and field to monitor the response of Pacific coast wireworm, Limonius canus LeConte, to food baits. A glass-plate assay was used in laboratory trials to study movement of wireworm larvae through soil in response to several food baits, including germinating seeds of grains, rolled oats [Avenu sauva L. (Poaceae)], carrot [Daucus carota L. (Umbelliferae)], and potato [Solanum tuberosum L. (Solanaceae)]. Studies were also done with these baits to determine effectiveness under field conditions. In both laboratory and field trials, germinating seed of wheat [Triticum aestivum L. (Poaceae)] and barley [Hordeum vulgare L. (Poaceae)] ranked higher in response by larvae than the remaining food baits. In the glass-plate assays, 65–70% of wireworms contacted the wheat or barley seed baits within a 2-h assay period. Corn [Zea mays L. (Poaceae)] seed and sliced carrot were also effective, with 60% of larvae contacting the baits. Rice [Oryza sativa L. (Poaceae)], rye [Secale cereale L. (Poaceae)], and potato were contacted by 30–45% of larvae. In the majority of assays, contact with the bait occurred within 30 min of the start of the assay. Trail lengths varied substantially among larvae (0–70 cm). The field studies showed that all food baits captured more wireworms than unbaited traps. A second assay conducted in the laboratory showed that moistened rolled oats were contacted with a higher probability if oats were aged 72 h following wetting (51% of larvae contacted the bait) than oats used immediately following wetting (28% of larvae). Field trials using baits composed of different volumes of rolled oats showed little evidence of a dose response in capture rates of L. canus, although all baits captured more wireworms than unbaited traps. These studies showed that L. canus is attracted to food baits in both laboratory and field trials, and that baits may prove useful to monitor populations of this pest in the field.

Résumé

Des expériences en laboratoire et en nature ont servi à évaluer la réaction de calidies du Pacifique, Limonius canus LeConte, à la présence d’appâts de nourriture. Des tests sur plaque de verre ont été utilisés en laboratoire pour étudier les déplacements des larves dans le sol en réaction à plusieurs appâts de nourriture dont plusieurs graines en germination de céréales, des flocons d'avoine [Avena sativa L. (Poaceae)], des carottes [Daucus carota L. (Umbelliferae)] et des pommes de terre [Solanum tuberosum L. (Solanaceae)]. L’efficacité de ces appâts a également été éprouvée en nature. En laboratoire aussi bien qu’en nature, les graines en germination du blé [Triticum aestivum L. (Poaceae)] et de l’orge [Hordeum vulgare L. (Poaceae)] sont les appâts qui ont suscité les plus fortes réactions chez les larves. Au cours des expériences sur plaque de verre, d'une durée de 2 h, 65–70% des larves ont fait contact avec des graines de blé ou d’orge. Le maïs [Zea mays L. (Poaceae)] et les carottes en tranches ont également été efficaces et ont attiré 60% des larves. Le riz [Oryza sativa L. (Poaceae)], le seigle [Secale cereale L. (Poaceae)] et la pomme de terre ont été approchés par 30–45% des larves. Dans la plupart des cas, le contact avec l’appât se faisait au cours des 30 premières min de l’expérience. La longueur des trajets parcourus variait considérablement d’une larve à l’autre (0–70 cm). Les études sur le terrain ont démontré que tous les appâts de nourriture ont capturé plus de calidies que les pièges sans appâts. Une deuxième expérience en laboratoire a montré que les flocons d’avoine mouillés étaient plus susceptibles d’être trouvés par les larves si on les avait humidifiés 72 h avant de les utiliser (51% des larves); les flocons utilisés immédiatement après leur mouillage attiraient moins de larves (28% des larves). En nature, les appâts constitués de différents volumes de flocons d’avoine ont donné lieu à des captures de L. canus apparemment indépendantes de la dose, mais tous les pièges appâtés ont capturé plus de larves de calidies que les pièges sans appât. Nos résultats indiquent que L. canus est attiré par des appâts de nourriture aussi bien en laboratoire qu’en nature et les appâts pourront s’avérer fort utiles pour évaluer les populations de ce ravageur en nature.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apablaza, J.U., Keaster, A.J., Ward, R.H. 1977. Orientation of corn-infesting species of wireworms toward baits in the laboratory. Environmental Entomology 6: 715–8CrossRefGoogle Scholar
Bernklau, E.J., Bjostad, L.B. 1998. Behavioral responses of first-instar western corn rootworm (Coleoptera: Chrysomelidae) to carbon dixoide in a glass bead bioassay. Journal of Economic Entomology 91: 444–56CrossRefGoogle Scholar
Bjostad, L.B. 1999. Carbon dioxide as a behavioural cue in host location by termites and corn rootworms. Annual Meeting of the Entomological Society of America, Atlanta, Georgia, 12–16 December 1999. Lanham, Maryland: Entomological Society of America [Abstract]Google Scholar
Cherry, R.H., Alvarez, J. 1995. Effect of time of bait exposure on number of wireworms (Coleoptera: Elateridae) found at baits. Florida Entomologist 78: 549–53CrossRefGoogle Scholar
Davis, G.R.F. 1961. The biting response of larvae of the prairie grain wireworm, Ctenicera aeripennis destructor (Brown) (Coleoptera: Elateridae), to various extracts of germinating rye seed. Canadian Journal of Zoology 39: 299303CrossRefGoogle Scholar
Doane, J.F., Lee, Y.W., Kingler, J., Westcott, N.D. 1975. The orientation response of Ctenicera destructor and other wireworms (Coleoptera: Elateridae) to germinating grain and to carbon dioxide. The Canadian Entomologist 107: 1233–52CrossRefGoogle Scholar
Furlan, L. 1998. The biology of Agriotes ustulatus Schäller (Col., Elateridae). II. Larval development, pupation, whole cycle description and practical implications. Journal of Applied Entomology 122: 71–8CrossRefGoogle Scholar
Jansson, R.K., Lecrone, S.H. 1989. Evaluation of food baits for pre-plant sampling of wireworms (Coleoptera: Elateridae) in potato fields in southern Florida. Florida Entomologist 72: 503–10CrossRefGoogle Scholar
Jansson, R.K., Seal, D.R. 1994. Biology and management of wireworms on potato. pp 3153in Zehnder, G.W., Powelson, M.L., Jansson, R.K., Raman, K.V. (Eds), Advances in potato pest biology and management. St. Paul, Minnesota: APS Press, American Phytopathological SocietyGoogle Scholar
Kirfman, G.W., Keaster, A.J., Story, R.N. 1986. An improved wireworm (Coleoptera: Elateridae) sampling technique for midwest cornfields. Journal of the Kansas Entomological Society 59: 3741Google Scholar
Lanchester, H.P. 1946. Larval determination of six economic species of Limonius (Coleoptera: Elateridae). Annals of the Entomological Society of America 39: 619–26CrossRefGoogle Scholar
Lane, M.C., Stone, M.W. 1960. Wireworms and their control on irrigated lands. Farmers' Bulletin 1866. Washington, DC: United States Department of AgricultureGoogle Scholar
Lehman, R.S. 1933. Field experiments with poison baits against wireworms, Limonius (Pheletes) canus Lec. Journal of Economic Entomology 26: 243–52CrossRefGoogle Scholar
Onsager, J.A. 1975. Pacific coast wireworm: relationship between injury and damage to potatoes. Journal of Economic Entomology 68: 203–4CrossRefGoogle Scholar
Parker, W.E. 1994. Evaluation of the use of food baits for detecting wireworms (Agriotes spp., Coleoptera: Elateridae) in fields intended for arable crop production. Crop Protection 13: 271–6CrossRefGoogle Scholar
Ryan, T.A. 1960. Significance tests for multiple comparison of proportions, variances, and other statistics. Psychological Bulletin 57: 318–23CrossRefGoogle ScholarPubMed
SAS Institute Inc. 1987. SAS/STAT guide for personal computers, version 6 edition. Cary, North Carolina: SAS Institute IncGoogle Scholar
Schreiber, A. 2000. Efforts underway to save Mocap. Potato Country (March 2000): 25–6Google Scholar
Seal, D.R., Chalfant, R.B., Hall, M.R. 1992. Effectiveness of different seed baits and baiting methods for wire-worms (Coleoptera: Elateridae) in sweet potato. Environmental Entomology 21: 957–63CrossRefGoogle Scholar
Spuler, A. 1925. Baiting wireworms. Journal of Economic Entomology 18: 703–7CrossRefGoogle Scholar
Stone, M.W., Foley, F.B. 1955. Effect of season, temperature, and food on the movement of the sugar-beet wireworm. Annals of the Entomological Society of America 48: 308–12CrossRefGoogle Scholar
Thorpe, W.H., Crombie, A.C., Hill, R., Darrah, J.H. 1947. The behaviour of wireworms in response to chemical stimulation. Journal of Experimental Biology 23: 234–66CrossRefGoogle ScholarPubMed
Toba, H.H. 1981. Wireworm control in potatoes. Washington State University Extension Bulletin 0955. Pullman: Washington State UniversityGoogle Scholar
Toba, H.H., Campbell, J.D. 1992. Wireworm (Coleoptera: Elateridae) survey in wheat-growing areas of northcentral and northeastern Oregon. Journal of the Entomological Society of British Columbia 89: 2530Google Scholar
Toba, H.H., Turner, J.E. 1983. Evaluation of baiting techniques for sampling wireworms (Coleoptera: Elateridae) infesting wheat in Washington. Journal of Economic Entomology 76: 850–5CrossRefGoogle Scholar
Ward, R.H., Keaster, A.J. 1977. Wireworm baiting: use of solar energy to enhance early detection of Melanotus depressus, M. verberans, and Aeolus mellillus in midwest cornfields. Journal of Economic Entomology 70: 403–6CrossRefGoogle Scholar
Wilkinson, A.T. 1963. Wireworms of cultivated land in British Columbia. Proceedings of the Entomological Society of British Columbia 60: 317Google Scholar
Zar, J.H. 1974. Biostatistical Analysis. Englewood Cliffs, New Jersey: Prentice Hall IncGoogle Scholar