Skip to main content Accessibility help
×
Home

Ommatissus lybicus (Hemiptera: Tropiduchidae), an economically important pest of date palm (Arecaceae) with highly divergent populations

  • Abdoolnabi Bagheri (a1), Yaghoub Fathipour (a1), Majeed Askari-Seyahooei (a2) and Mehrshad Zeinalabedini (a3)

Abstract

Ommatissus lybicus de Bergevin (Hemiptera: Tropiduchidae) is a key pest of date palm (Phoenix dactylifera Linnaeus; Arecaceae) with worldwide distribution and various management strategies. To study genetic diversity of date palm hopper, a series of experiments was conducted on genetic structure and genetic diversity of 15 geographic populations of O. lybicus (Abu Musa, Bam, Bushehr, Behbahan, Tezerj, Fin, Jiroft, Shahdad, Jahrom, Ghire Karzin, Ghasre Shirin, Iran; Pakistan; Oman; Egypt; and Tunisia) by amplified fragment length polymorphism, cytochrome c oxidase subunit I (COI), and 28S rRNA markers. Analysis of molecular variance analysis of amplified fragment length polymorphism data and COI sequences revealed a significant variation among O. lybicus populations (94.12% and 65.08% similarities for amplified fragment length polymorphism and COI, respectively). The 28S rDNA sequences from different populations were identical. Phylogenetic network inferred from amplified fragment length polymorphism data and COI sequences grouped two geographically close populations (Tezerj and Bam) in the two distinct clades while far apart geographical populations bunched in the same or close clades. These two populations experience repeated exposure to heavy pesticide applications annually. In conclusion, study of the genetic structure revealed a considerable variation between O. lybicus populations under intensive chemical strategies.

Copyright

Corresponding author

1 Corresponding author: (e-mail: fathi@modares.ac.ir)

Footnotes

Hide All

Subject editor: Amanda Roe

Footnotes

References

Hide All
Bagheri, A., Fathipour, Y., Askari-Seyahooei, M., and Zeinolabedini, M. 2016. How different populations and host plant cultivars affect two-sex life table parameters of the date palm hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae). Journal of Agricultural Science and Technology, 18: 16061619.
Bagheri, A., Fathipour, Y., Askari-Seyahooei, M., and Zeinolabedini, M. 2017. Reproductive isolation among allopatric populations of date palm hopper, Ommatissus lybicus (Hemiptera: Tropiduchidae). Annals of the Entomological Society of America, 110: 337343.
Ballman, E.S., Rugman-Jones, P.F., Stouthamer, R., and Hoddle, M.S. 2011. Genetic structure of Graphocephala atropunctata (Hemiptera: Cicadellidae) populations across its natural range in California reveals isolation by distance. Journal of Economic Entomology, 104: 279287.
Berteaux, D., Reale, D., McAdam, A.G., and Boutin, S. 2004. Keeping pace with fast climate change: can Arctic life count on evolution? Integrative and Comparative Biology, 44: 140151.
Bonin, A., Paris, M., Tetreau, G., David, J.P., and Despres, L. 2009. Candidate genes revealed by a genome scan for mosquito resistance to a bacterial insecticide: sequence and gene expression variation. BMC Genomics, 10: 551. https://doi.org/10.1186/1471-2164-10-551.
Brown, A.R., Hosken, D.J., Balloux, F., Bickley, L.K., Le Page, G., Owen, S.F., et al. 2009. Genetic variation, inbreeding and chemical exposure-combined effects in wildlife and critical considerations for ecotoxicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 33773390.
Chang, X., Zhong, D., Lo, E., Fang, Q., Bonizzoni, M., Wang, X., et al. 2016. Landscape genetic structure and evolutionary genetics of insecticide resistance gene mutation in Anopheles sinensis . Parasites & Vectors, 9: 228. https://doi.org/10.1186/s13071-016-1513-6.
Cifuentes, D., Chynoweth, R., and Bielza, P. 2011. Genetic study of Mediterranean and South American populations of tomato leafminer Tuta absoluta (Povolny 1994) (Lepidoptera: Gelechidae) using ribosomal and mitochondrial markers. Pest Management Science, 67: 11551162.
Clement, M., Posada, D., and Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9: 16571660.
Ellers, J. and Boggs, C.L. 2004. Functional ecological implications of intraspecific differences in wing melanization in Colias butterflies. Biological Journal of the Linnean Society, 82: 7987.
Excoffier, L. and Lischer, H.E.L. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetic analyses under Linux and Window. Molecular Ecology Resources, 10: 564567.
Fayet, A.L., Tobia, J.A., Hintzen, R.F., and Seddon, N. 2014. Immigration and dispersal are key determinants of cultural diversity in songbird population. Behavioral Ecology, 25: 744753.
Folmer, O., Hoeh, W.R.M., Black, B., and Vrijenhoek, R.C. 1994. Conserved primers for PCR amplification of mitochondrial DNA from different invertebrate phyla. Molecular Marine Biology and Biotechnology, 3: 294299.
Galtier, N., Nabholz, B., Glemin, S., and Hurst, G.D.D. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18: 45414550.
Hawthorne, D.J. 2001. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: sex chromosomes and a pyrethroid-resistance candidate gene. Genetics, 158: 695700.
Hoffmann, A.A. and Sgro, C.M. 2011. Climate change and evolutionary adaptation. Nature, 470: 479485.
Howard, F.W., Giblin-Davis, R., Moore, D., and Abad, R. 2001. Insects on palms. Centre for Agriculture and Biosciences International. Centre for Agriculture and Bioscience International, Wallingford, Oxon, United Kingdom.
Huson, D.H. and Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23: 254267.
Jensen, J.L., Bohonak, A.J., and Kelley, S.T. 2005. Isolation by distance, web service. BMC Genetics, 6: 13. https://doi.org/10.1186/1471-2156-6-13.
Kavar, T., Pavlovcic, P., Susnik, S., Meglic, V., and Virant-Doberlet, M. 2006. Genetic differentiation of geographically separated populations of the southern green stink bug Nezara viridula (Hemiptera: Pentatomidae). Bulletin of Entomological Research, 96: 117128.
Larget, B. and Simon, D.L. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16: 750759.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 29472948.
Librado, P. and Rozas, J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 14511452.
Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209220.
Mezghani, M., Bouktila, D., Kharrat, I., Makni, M., and Makni, H. 2012. Genetic variability of green citrus aphid populations from Tunisia, assessed by RAPD markers and mitochondrial DNA sequences. Entomological Science, 15: 171179.
Nylander, J.A.A. 2004. MrModeltest V2. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
Paradis, E., Claude, J., and Strimmer, K. 2004. Analyses of phylogenetics and evolution in R language. Bioinformatics, 20: 289290.
Penton, E.H., Hebert, P.D.N., and Crease, T.J. 2004. Mitochondrial DNA variation in North American populations of Daphnia obtuse: continentalism or cryptic endemism? Molecular Ecology, 13: 97107.
Piiroinen, S., Lindstrom, L., Lyytinen, A., Mappes, J., Chen, Y.H., Izzo, V., and Grapputo, A. 2013. Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evolutionary Biology, 13: 13. https://doi.org/10.1186/1471-2148-13-13.
Reinecke, A., Karlovsky, P., and Zebit, C.P.W. 1998. Preparation and purification of DNA from insects for AFLP analysis. Insect Molecular Biology, 7: 9599.
Ronquist, F. and Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 15721574.
Shah, A., Mohsin, A., Bodlah, I., and Hafez, Z. 2012. Dubas bug, Ommatissus lybicus (Tropiduchidae: Hemiptera) - a new record from Panjgur, Balochestan, Pakistan. Pakistan Journal of Zoology, 44: 17651769.
Takahiro, M. 2012. The genetic architecture of insecticide resistance within a natural population of Drosophila melanogaster . Open Journal of Genetics, 2: 9094.
Templeton, A.R., Crandall, K.A., and Sing, C.F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data III. Cladogram estimation. Genetics, 132: 619633.
Thaler, R., Brandstatter, A., Meraner, A., Chabicovsky, W., Parson, W., Zelger, R., et al. 2008. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Molecular Phylogenetics and Evolution, 48: 838849.
Timmermans, M.J.T.N., Ellers, J., Marien, J., Verhoef, S.C., Ferwerda, E.B., and Van Straalen, N.M. 2005. Genetic structure in Orchesella cincta (Collembola): strong subdivision of European populations inferred from mtDNA and AFLP markers. Molecular Ecology, 14: 20172024.
Wang, M.L., Barkley, N.A., and Jenkin, T.M. 2009. Microsatellite markers in plant and insects. Part I: applications of biotechnology. Genes, Genomes and Genomics, 3: 5467.
Weir, B.S. and Cockerham, C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 13581370.
Wilson, M.R. 1986. The Auchenorrhyncha (Homoptera) associated with palms. Proceedings of the Second International Workshop on Leafhoppers and Plant Hoppers of Economic Importance, 28: 327–342.
Wilson, M.R. 1988. Records of Homoptera, Auchenorrhyncha from palms and associations with disease in coconuts. Oleagineux, 43: 247253.
Zaid, A. 2002. Date palm cultivation. Food and Agriculture Organization, Plant Product Protection, Rome, Italy.

Related content

Powered by UNSILO

Ommatissus lybicus (Hemiptera: Tropiduchidae), an economically important pest of date palm (Arecaceae) with highly divergent populations

  • Abdoolnabi Bagheri (a1), Yaghoub Fathipour (a1), Majeed Askari-Seyahooei (a2) and Mehrshad Zeinalabedini (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.