Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T14:07:57.580Z Has data issue: false hasContentIssue false

Observations on the feeding behaviour of late-instar larvae of Choristoneura fumiferana

Published online by Cambridge University Press:  02 April 2012

Kees van Frankenhuyzen*
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
Sylvain Espinasse
Affiliation:
Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
1 Corresponding author (e-mail: Kees.vanFrankenhuyzen@NRCan-RNCan.gc.ca).

Abstract

Laboratory observations revealed that late-instar larvae of the eastern spruce budworm (Choristoneura fumiferana (Clemens)) (Lepidoptera: Tortricidae) spend most of their time spinning, wandering, and resting; less than 10% is spent feeding. Larvae feed in a discontinuous pattern of short feeding bouts separated by much longer intervals of nonfeeding activity. Over a 2 h observation period, feeding bouts averaged 2.2 min and were separated by 17.4 min intervals for 4th-instar larvae as compared to 3.3 min bouts separated by 33.4 min intervals for 5th-instar larvae. The duration of a feeding bout was positively correlated with the duration of the subsequent interval, not with the duration of preceding intervals, suggesting that feeding-bout frequency is governed primarily by post-ingestion processes. It is postulated that short feeding bouts followed by long intervals limit the window for ingesting an efficacious dose of aerially applied insecticides such as Bacillus thuringiensis.

Résumé

Des observations en laboratoire révèlent que les larves des derniers stades de la tordeuse des bourgeons de l'épinette de l'est (Choristoneura fumiferana (Clemens)) (Lepidoptera : Tortricidae) passent la majorité de leur temps à tisser, errer et se reposer; moins de 10 % du temps est utilisé pour l'alimentation. Les larves se nourrissent en suivant un patron discontinu de courtes périodes d'alimentation séparées par des intervalles beaucoup plus longs sans activité alimentaire. Sur une période d'observation de 2 h, les périodes d'alimentation durent en moyenne 2,2 min et sont séparées par des intervalles de 17,4 min au 4e stade et durent 3,3 min avec des intervalles de 33,4 min au 5e stade. Il existe une corrélation entre la durée de la période d'alimentation et la durée de l'intervalle subséquent, mais non avec la durée de l'intervalle précédent; cela laisse croire que la fréquence des activités alimentaires est contrôlée principalement par les processus postérieurs à l'ingestion. Nous avançons l'hypothèse selon laquelle les courtes périodes d'alimentation suivies de longs intervalles peuvent restreindre la fenêtre d'ingestion d'une dose efficace des insecticides répandus par avion, tels que Bacillus thuringiensis.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauce, E., Carisey, N., Dupont, A., and van Frankenhuyzen, K. 2004. Bacillus thuringiensis subsp. kurstaki (Btk) aerial spray prescriptions for balsam fir stand protection against spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology, 97: 16241634. PMID: 15568352 doi:10.1603/0022-0493-97.5.1624.Google Scholar
Bowdan, E. 1988. Microstructure of feeding by tobacco hornworm caterpillars, Manduca sexta. Entomologia Experimentalis et Applicata, 47: 127136. doi:10.1007/BF00367478.CrossRefGoogle Scholar
Heimpel, A.M., and Angus, T.A. 1959. The site of action of crystalliferous bacteria in Lepidoptera larvae. Journal of Insect Pathology, 1: 152170.Google Scholar
Heinrich, B. 1971. The effect of leaf geometry on the feeding behaviour of the caterpillar of Manduca sexta (Sphingidae). Animal Behaviour, 19: 119124. doi:10.1016/S0003-3472(71)80145-8.Google Scholar
Heitland, W., and Pschorn-Walcher, H. 1993. Feeding strategies of sawflies. In Sawfly life history adaptations to woody plants. Edited by Wagner, M.R. and Raffa, K.F.. Academic Press, San Diego, California. pp. 94118.Google Scholar
Ma, W.C. 1972. Dynamics of feeding responses in Pieris brassicae as a function of chemosensory input: a behavioural, ultrastructural and electro-physiological study. Mededelingen Landbouwhogeschool Wageningen, 72–11.Google Scholar
Nigam, P.C., 1995. Response of spruce budworm, Choristoneura fumiferana, larvae to insecticides. In Forest insect pests in Canada. Edited by Armstrong, J.A. and Ives, W.G.H.Science and Sustainable Development Directorate, Natural Resources Canada, Ottawa, Ontario. pp. 107112.Google Scholar
Retnakaran, A. 1983. Spectrophotometric determination of larval ingestion rates in the spruce budworm (Lepidoptera: Tortricidae). The Canadian Entomologist, 115: 3140. doi:10.4039/Ent11531-1.CrossRefGoogle Scholar
Reynolds, S.E., Yeomans, M.R., and Timmins, W.A. 1986. The feeding behaviour of caterpillars (Manduca sexta) on tobacco and artificial diet. Physiological Entomology, 11: 3951. doi:10.1111/j.1365-3032.1986.tb00389.x.CrossRefGoogle Scholar
Simpson, S.J. 1982. Patterns in feeding: a behavioural analysis using Locusta migratoria nymphs. Physiological Entomology, 7: 325336. doi:10.1111/j.1365-3032.1982.tb00305.x.CrossRefGoogle Scholar
Truman, J.W. 1972. Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. Journal of Experimental Biology, 37: 805820.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C. W. 1987. Effect of temperature on mortality and recovery of spruce budworm (Lepidoptera: Tortricidae) exposed to Bacillus thuringiensis Berliner. The Canadian Entomologist, 199: 941954. doi:10.4039/Ent119941-10.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Nystrom, C. W. 1989. Residual toxicity of a high-potency formulation of Bacillus thuringiensis to spruce budworm (Lepidoptera: Tortricidae). Journal of Economic Entomology, 82: 868872.CrossRefGoogle Scholar
van Frankenhuyzen, K., and Payne, N.J. 1993. Theoretical optimization of aerial application of Bacillus thuringiensis Berliner for control of the eastern spruce budworm, Choristoneura fumiferana Clem.: estimates of lethal and sublethal dose requirements, product potency, and effective droplet sizes. The Canadian Entomologist, 125: 473478. doi:10.4039/Ent125473-3.CrossRefGoogle Scholar
van Frankenhuyzen, K., Ebling, P., McCron, B., Ladd, T., Gauthier, D., and Vossbrinck, C. 2004. Occurrence of Cystosporogenes sp. (Protozoa: Microsporidia) in a multi-species insect production facility and its elimination from a colony of the eastern spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Journal of Invertebrate Pathology, 87: 1628. PMID:15491595 doi:10.1016/j.jip.2004.06.001.CrossRefGoogle Scholar