Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-13T14:35:59.105Z Has data issue: false hasContentIssue false

LIFE HISTORIES OF COEXISTING SPECIES OF CERACLEA CADDISFLIES (TRICHOPTERA: LEPTOCERIDAE): THE OPERATION OF INDEPENDENT FUNCTIONAL UNITS IN A STREAM ECOSYSTEM1

Published online by Cambridge University Press:  31 May 2012

Vincent H. Resh
Affiliation:
Water Resources Laboratory, University of Louisville, Louisville, Kentucky

Abstract

Bionomics of the stream caddisflies, Ceraclea transversa (Hagen) (= Athripsodes angustus Banks) and Ceraclea ancylus (Vorhies) (= Athripsodes ancylus (Vorhies)) were compared with generalized trichopteran life cycles. The univoltine detritus-feeding C. ancylus has five larval instars and a brief adult emergence period. C. transversa has five larval instars but two distinct cohorts, in which larvae of the first cohort feed entirely on freshwater sponge, overwinter as inactive prepupae, pupate, and emerge the following spring. The second larval cohort feeds on sponge until the onset of gemmulation in autumn, then the larvae must overwinter as active third- or fourth-instar detritus-feeders, pupating and emerging later in the summer than the first cohort. The detritus-feeding C. ancylus larvae have a diurnal feeding cycle. The sand case of C. ancylus and the silk-secreted case of C. transversa differ in shape and composition, although both species initiate case construction using egg mass matrix, silk, and detritus. Emergence, flight activity, sex ratios, and adult survival depart from reported generalizations of caddisfly biology. Neither the validity of generalizing typical life cycles in benthic studies, nor the rationale that congeneric species operate as a functional unit in stream dynamics, is substantiated.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, J. I. and Meadows, P. S.. 1972. An analysis of aggregations formed by the caddisfly larva Potamophylax latipennis in its natural habitat. J. Zool., Lond. 167: 133141.CrossRefGoogle Scholar
Chapman, D. W. and Demory, R. L.. 1963. Seasonal changes in the food ingested by aquatic insect larvae and nymphs in two Oregon streams. Ecology 44: 140146.CrossRefGoogle Scholar
Clady, M. D. 1969. The use of freshwater sponge in case construction of Limnephilus species. Proc. ent. Soc. Wash. 71: 98.Google Scholar
Corbet, P. S. 1966. Diel periodicities of emergence and oviposition in riverine Trichoptera. Can. Ent. 98: 10251034.CrossRefGoogle Scholar
Corbet, P. S. and Tjonneland, A.. 1955. The flight activity of twelve species of East African Trichoptera. Univ. Bergen Arb. Natur. R. 49 pp.Google Scholar
Cummins, K. W. 1964. Factors limiting the micro-distribution of larvae of the caddisflies Pycnopsyche lepida (Hagen) and Pycnopsyche guttifier (Walker) in a Michigan stream. Ecol. Monogr. 34: 271295.CrossRefGoogle Scholar
Cummins, K. W. 1973. Trophic relations of aquatic insects. A. Rev. Ent. 18: 183206.CrossRefGoogle Scholar
Davis, C. C. 1965. A study of the hatching process in aquatic invertebrates. XVIII. Eclosion in Helicopsyche borealis (Hagen) (Trichoptera, Helicopsychidae). Am. Midl. Nat. 74: 443450.CrossRefGoogle Scholar
Davis, M. B. 1934. Habits of the Trichoptera, pp. 82–106. In Betten, C., The caddisflies or Trichoptera of New York State. Bull. N.Y. St. Mus. 292. 576 pp.Google Scholar
Elliot, J. M. 1969. Life history and biology of Sericostoma personatum Spence (Trichoptera). Oikos 20: 110118.CrossRefGoogle Scholar
Flannagan, J. F. and Lawler, G. H.. 1972. Emergence of caddisflies (Trichoptera) and mayflies (Ephemeroptera) from Heming Lake, Manitoba. Can. Ent. 104: 173183.CrossRefGoogle Scholar
Grant, P. R. and Mackay, R. J.. 1969. Ecological segregation of systematically related stream insects. Can. J. Zool. 47: 691694.CrossRefGoogle Scholar
Hanna, H. M. 1961. Observations on the egg laying of some British caddisflies and on case-building by newly hatched larvae. Proc. R. ent. Soc. Lond. (A) 36: 5762.Google Scholar
Harris, T. L. 1971. Crepuscular flight periodicity of Trichoptera. J. Kans. ent. Soc. 44: 295301.Google Scholar
Harrison, F. W. 1974. Sponges (Porifera). In Hart, C. W. Jr., and Fuller, S. L. H. (Eds.), Pollution ecology of freshwater invertebrates. Academic Press, New York. 389 pp.Google Scholar
Jefferts, E., Morales, R. W., and Litchfield, C.. 1974. Occurrence of cis-5, cis-9-hexacosadienoic and cis-5, cis-9, cis-19-hexacosatrienic acids in the marine sponge Microciona prolifera. Lipids 9: 244247.CrossRefGoogle ScholarPubMed
Jones, J. R. E. 1949. A further ecological study of calcereous streams in the “Black Mountain” district of South Wales. J. Anim. Ecol. 18: 142159.CrossRefGoogle Scholar
Krumholz, L. A. 1971. A preliminary ecological study of areas to be impounded in the Salt River basin of Kentucky. Res. Rep. 43. Water Resources Institute, University of Kentucky. 41 pp.Google Scholar
Krumholz, L. A. and Neff, S. E.. 1972. A preliminary ecological study of areas to be impounded into the Salt River basin of Kentucky. Res. Rep. 48. Water Resources Institute, University of Kentucky. 31 pp.Google Scholar
Lehmkuhl, D. M. 1970. A North American Trichoptera larva which feeds on freshwater sponge (Trichoptera: Leptoceridae; Porifera: Spongillidae). Am. Midl. Nat. 84: 278280.CrossRefGoogle Scholar
Litchfield, C. and Morales, R. W.. 1976. Are Demospongiae cell membranes unique among living organisms? In Harrison, F. W. and Cowden, R. R. (Eds.), Aspects of sponge biology. Academic Press, New York. 354 pp.Google Scholar
Mackay, R. J. 1972. Temporal patterns of life history and flight behaviour of Pycnopsyche gentilis, P. luculenta, and P. scabripennis (Trichoptera: Limnephilidae). Can. Ent. 104: 18191835.CrossRefGoogle Scholar
Mason, W. T. Jr., Lewis, P. A., and Anderson, J. B.. 1971. Macroinvertebrate collections and water quality monitoring in the Ohio River Basin 1963–67. Cooperative report. Ohio Basin Region and Analytical Quality Control Office, Environmental Protection Agency, Cincinnati, Ohio. 51 pp.Google Scholar
Mecom, J. 1970. Evidence of diurnal feeding activity in Trichoptera larvae. J. Grad. Res. S.M.U. 38: 4457.Google Scholar
Mecom, J. O. and Cummins, K. W.. 1964. A preliminary study of the trophic relationships of the larvae of Brachycentrus americanus (Banks) (Trichoptera: Brachycentridae). Trans. Am. microsc. Soc. 83: 233243.CrossRefGoogle Scholar
Morgan, N. C. 1956. The biology of Leptocerus aterrimus Steph. with reference to its availability as a food for trout. J. Anim. Ecol. 25: 349365.CrossRefGoogle Scholar
Morgan, N. C. and Waddell, A. B.. 1961. Diurnal variation in the emergence of some aquatic insects. Trans. R. ent. Soc. Lond. 113: 123137.CrossRefGoogle Scholar
Morse, J. C. 1975. A revision of the caddisfly genus Ceraclea (Trichoptera, Leptoceridae). Contr. Am. Ent. Inst. 11: 197.Google Scholar
Murphy, H. E. 1919. Observations on the egg-laying of the caddisfly Brachycentrus nigrisoma Banks, and on the habits of the young larvae. J. N.Y. ent. Soc. 27: 154159.Google Scholar
Neff, S. E. and Krumholz, L. A.. 1973. A detailed investigation of the sociological, economic, and ecological aspects of proposed reservoir sites in the Salt River Basin of Kentucky. Res. Rep. 67. Water Resources Institute, University of Kentucky. 64 pp.Google Scholar
Resh, V. H. 1972. A technique for rearing caddisflies (Trichoptera). Can. Ent. 104: 19591961.CrossRefGoogle Scholar
Resh, V. H. 1974. The use of transect sampling techniques in estimating single species production of aquatic insects. Verh. int. Verein. theor. angew. Limnol. 19: 30893094.Google Scholar
Resh, V. H. 1975. A distributional study of the caddisflies of Kentucky. Trans. Ky Acad. Sci. 36: 616.Google Scholar
Resh, V. H., Haag, K. H., and Neff, S. E.. 1975. Community structure and diversity of caddisfly adults from the Salt River, Kentucky. Environ. Ent. 4: 241253.CrossRefGoogle Scholar
Resh, V. H. and Unzicker, J. D.. 1975. Water quality monitoring and aquatic organisms: the importance of species identification. J. Water Poll. Control Fed. 47: 919.Google ScholarPubMed
Ricker, W. E. 1946. Production and utilization of fish populations. Ecol. Monogr. 16: 373391.CrossRefGoogle Scholar
Ricker, W. E. 1968. Methods for assessment of fish production in fresh waters. IBP Handb. 3. Blackwell, Great Britain. 313 pp.Google Scholar
Ross, H. H. 1944. The caddisflies, or Trichoptera, of Illinois. Bull. Ill. nat. Hist. Surv. 23. 326 pp.Google Scholar
Scott, D. 1958. Ecological studies on the Trichoptera of the River Dean, Cheshire. Arch. Hydrobiol. 54: 340392.Google Scholar
Thorup, J. and Iverson, T. M.. 1974. Ingestion by Sericostoma personatum Spence (Trichoptera, Sericostomatidae). Arch. Hydrobiol. 74: 3947.Google Scholar
Thut, R. N. 1969. A study of the profundal bottom fauna of Lake Washington. Ecol. Monogr. 39: 79100.CrossRefGoogle Scholar
Wiggins, G. B. 1973. A contribution to the biology of caddisflies (Trichoptera) in temporary pools. Life Sci. Contr. Roy. Ont. Mus. 88. 28 pp.Google Scholar
Winterbourn, M. J. 1971. The life histories and trophic relationships of the Trichoptera of Marion Lake, British Columbia. Can. J. Zool. 49: 623635.CrossRefGoogle Scholar