Skip to main content Accessibility help

Impacts of the agricultural transformation of the Canadian Prairies on grassland arthropods

  • M.A. Vankosky (a1), H.A. Cárcamo (a2), H.A. Catton (a2), A.C. Costamagna (a3) and R. De Clerck-Floate (a2)...


The prairie grasslands have been transformed to become the primary source of agricultural production in Canada. Soon after its establishment, the Biological Survey of Canada recognised the urgent need to document the arthropods of the prairie grasslands, especially in the few pristine remnants. Although this initiative has yielded considerable progress in documenting the species present in the Prairies Ecozone, comprehensive ecological studies are sparse. Landscape effects on arthropods are well studied elsewhere, but no equivalent studies have been published for the Canadian Prairies. Crop rotation varies landscape composition annually, changes host plant resources in fields, and interacts with other agricultural inputs to disturb pest and beneficial arthropods. Despite only a handful of studies on grazing, there is an emerging pattern: moderate grazing increases arthropod diversity and benefits certain arthropod guilds. Abiotic inputs elicit variable responses from different arthropod taxa; Carabidae (Coleoptera) are best studied, with some information available for ants (Hymenoptera: Formicidae) and aquatic arthropods. Biotic inputs include arthropods released for biocontrol of weed and insect pests; evidence indicates that biocontrol agents of insects have a greater potential for impact on native communities of arthropods. The studies reviewed here reveal important trends and research gaps to be addressed in the future.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impacts of the agricultural transformation of the Canadian Prairies on grassland arthropods
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impacts of the agricultural transformation of the Canadian Prairies on grassland arthropods
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impacts of the agricultural transformation of the Canadian Prairies on grassland arthropods
      Available formats


Corresponding author

1 Corresponding author (e-mail:


Hide All

Subject editor: Donna Giberson



Hide All
Acorn, J.H. 2007. Ladybugs of Alberta: finding the spots and connecting the dots. University of Alberta Press, Edmonton, Alberta, Canada.
Agriculture and Agri-Food Canada. 2010. Reduced-risk wireworm management in potato. Publication 11190E. Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
Ahern, R.G. and Brewer, M.J. 2002. Effect of different wheat production systems on the presence of two parasitoids (Hymenoptera: Aphelinidae; Braconidae) of the Russian wheat aphid in the North American Great Plains. Agriculture, Ecosystems and Environment, 92: 201210.
Altieri, M.A., Letourneau, D.K., and Risch, S.J. 1984. Vegetation diversity and insect pest outbreaks. Critical Reviews in Plant Sciences, 2: 131169.
Andow, D. 1983. The extent of monoculture and its effect on insect pest populations with particular reference to wheat and cotton. Agriculture, Ecosystems and Environment, 9: 2535.
Baguette, M. and Hance, T. 1997. Carabid beetles and agricultural practices: influence of soil ploughing. Biological Agriculture and Horticulture, 15: 185190.
Benton, T.G., Vickery, J.A., and Wilson, J.D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution, 18: 182188.
Beres, B., Dosdall, L., Weaver, D., Cárcamo, H., and Spaner, D. 2011. Biology and integrated management of wheat stem sawfly and the need for continuing research. The Canadian Entomologist, 143: 105125.
Bertrand, C., Burel, F., and Baudry, J. 2016. Spatial and temporal heterogeneity of the crop mosaic influences carabid beetles in agricultural landscapes. Landscape Ecology, 31: 451466.
Bianchi, F., Booij, C., and Tscharntke, T. 2006. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proceedings of the Royal Society B: Biological Sciences, 273: 17151727.
Bianchi, F.J.J.A., van Wingerden, W.K.R.E., Griffioen, A.J., van der Veen, M., van der Straten, M.J.J., Wegman, R.M.A., and Meeuwsen, H.A.M. 2005. Landscape factors affecting the control of Mamestra brassicae by natural enemies in Brussels sprout. Agriculture, Ecosystems and Environment, 107: 145150.
Biodiversity Institute of Ontario. 2013. DNA Barcode-based assessment of arthropod diversity in Canada’s National Parks: progress report for Grasslands National Park. Bio-Inventory and Collections Unit, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada. Pp. 1–13.
Boiteau, G., Picka, J., and Watmough, J. 2008. Potato field colonization by low-density populations of Colorado potato beetle as a function of crop rotation distance. Journal of Economic Entomology, 101: 15751583.
Bourassa, S., Cárcamo, H.A., Larney, F.J., and Spence, J.R. 2008. Carabid assemblages (Coleoptera: Carabidae) in a rotation of three different crops in southern Alberta, Canada: a comparison of sustainable and conventional farming. Environmental Entomology, 37: 12141223.
Bourassa, S., Cárcamo, H.A., Spence, J.R., Blackshaw, R.E., and Floate, K. 2010. Effects of crop rotation and genetically modified herbicide-tolerant corn on ground beetle diversity, community structure, and activity density. The Canadian Entomologist, 142: 143159.
Bousquet, Y., Bouchard, P., Davies, A.E., and Sikes, D.S. 2013. Checklist of beetles (Coleoptera) of Canada and Alaska. Pensoft Series Faunistica 109, Pensoft, Sofia, Bulgaria.
Broatch, J.S. 2008. Root maggot and beneficial insect dynamics in response to weed populations in canola. Ph.D. thesis. University of Alberta, Edmonton, Alberta, Canada.
Brook, H. and Cutts, M. 2017. Crop Protection 2017. Alberta Agriculture and Forestry, Edmonton, Alberta, Canada.
Brust, G.E. and King, L.R. 1994. Effects of crop rotation and reduced chemical inputs on pests and predators in maize agroecosystems. Agriculture, Ecosystems and Environment, 48: 7789.
Bullock, D.G. 1992. Crop rotation. Critical Reviews in Plant Sciences, 11: 309326.
Butts, R.A., Floate, K.D., David, M., Blackshaw, R.E., and Burnett, P.A. 2003. Influence of intercroppng canola or pea with barley on assemblages of ground beetles (Coleoptera: Carabidae). Environmental Entomology, 32: 535541.
Campbell, C., Zentner, R., Gameda, S., Blomert, B., and Wall, D. 2002. Production of annual crops on the Canadian prairies: trends during 1976–1998. Canadian Journal of Soil Science, 82: 4557.
Capinera, J.L. 2005. Relationships between insect pests and weeds: an evolutionary perspective. Weed Science, 53: 892901.
Cárcamo, H.A. 1995. Effect of tillage on ground beetles (Coleoptera: Carabidae): a farm-scale study in central Alberta. The Canadian Entomologist, 127: 631639.
Cárcamo, H. and Brandt, R. 2017. Cabbage seedpod weevil management. In Integrated management of insect pests on canola and other brassica oilseed crops. Edited by V.P. Gadi Reddy. CABI, Boston, Massachusetts, United States of America. Pp. 7787.
Cárcamo, H., Dosdall, L., and Larson, T. 2007. Phenology and parasitism of the cereal leaf beetle in Alberta [online]. In Minutes of the 47th annual meeting of the Western Committee on Crop Pests, Penticton, British Columbia, 18 October 2007. P. 24. Available from [accessed 25 March 2017].
Cárcamo, H.A., Niemalä, J.K., and Spence, J.R. 1995. Farming and ground beetles: effects of agronomic practice on populations and community structure. The Canadian Entomologist, 127: 123140.
Cárcamo, H.A. and Spence, J.R. 1994. Crop type effects on the activity and distribution of ground beetles (Coleoptera: Carabidae). Environmental Entomology, 23: 684692.
Carvalheiro, L.G., Buckley, Y.M., Ventim, R., Fowler, S.V., and Memmott, J. 2008. Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters, 11: 690700.
Chaplin-Kramer, R., de Valpine, P., Mills, N.J., and Kremen, C. 2013. Detecting pest control services across spatial and temporal scales. Agriculture, Ecosystems and Environment, 181: 206212.
Chaplin-Kramer, R., O’Rourke, M.E., Blitzer, E.J., and Kremen, C. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters, 14: 922932.
Chliboyko, J. 2010. A prairie still standing tall, barely [online]. Canadian National Geographic. Available from: [accessed 7 March 2017].
Clapperton, M.J., Kanashiro, D.A., and Behan-Pelletier, V.M. 2002. Changes in abundance and diversity of microarthropods associated with fescue prairie grazing regimes. Pedobiologia, 46: 496511.
Croft, B.A. 1990. Arthropod biological control agents and pesticides. Wiley, New York, New York, United States of America.
Crowe, M.L. and Bourchier, R.S. 2006. Interspecific interactions between the gall-fly Urophora affinis Frfld. (Diptera: Tephritidae) and the weevil Larinus minutus Gyll. (Coleoptera: Curculionidae), two biological control agents released against spotted knapweed, Centaurea stobe ssp. micranthos . Biocontrol Science and Technology, 16: 417430.
De Clerck-Floate, R. and Cárcamo, H. 2011. Biocontrol arthropods: new denizens of Canada’s grassland agroecosystems. In Arthropods of Canadian grasslands (Volume 2: inhabitants of a changing landscape). Edited by K. Floate. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 291322.
De Clerck-Floate, R. and Wikeem, B. 2009. Influence of release size on establishment and impact of a root weevil for the biocontrol of houndstongue (Cynoglossum officinale). Biocontrol Science and Technology, 19: 169183.
De Clerck-Floate, R.A., Wikeem, B., and Bourchier, R.S. 2005. Early establishment and dispersal of the weevil, Mogulones cruciger (Coleoptera: Curculionidae) for biological control of houndstongue (Cynoglossum officinale) in British Columbia, Canada. Biocontrol Science and Technology, 15: 173190.
Doane, J.F., Olfert, O.O., Elliott, R.H., Hartley, S., and Meers, S. 2013. Sitodiplosis mosellana (Géhin), orange wheat blossom midge (Diptera: Cecidomyiidae). In Biological control programmes in Canada 2001–2012. Edited by P.G. Mason and D.R. Gillespie. CABI Publishing, Wallingford, Oxon, United Kingdom. Pp. 272276.
Dosdall, L.M., Gibson, G.A.P., Olfert, O.O., and Mason, P.G. 2009. Responses of Chalcidoidea (Hymenoptera) parasitoids to invasion of the cabbage seedpod weevil (Coleoptera: Curculionidae) in western Canada. Biological Invasions, 11: 109125.
Dosdall, L.M., Harker, K., O’Donovan, J., Blackshaw, R., Kutcher, H., Gan, Y., and Johnson, E. 2012. Crop sequence effects on root maggot (Diptera: Anthomyiidae: Delia spp.) infestations in canola. Journal of Economic Entomology, 105: 12611267.
Dosdall, L.M. and Lehmkuhl, D.M. 1989. Drift of aquatic insects following methoxychlor treatment of the Saskatchewan River system. The Canadian Entomologist, 121: 10771096.
Dosdall, L.M., Soroka, J.J., and Olfert, O. 2011. The diamondback moth in canola and mustard: current pest status and future prospects. Prairie Soils and Crops, 4: 6676.
Duflot, R., Aviron, S., Ernoult, A., Fahrig, L., and Burel, F. 2015. Reconsidering the role of ‘semi-natural habitat’ in agricultural landscape biodiversity: a case study. Ecological Research, 30: 7583.
Ellsbury, M.M., Powell, J.E., Forcella, F., Woodson, W.D., Clay, S.A., and Riedell, W.E. 1998. Diversity and dominant species of ground beetle assemblages (Coleoptera: Carabidae) in crop rotation and chemical input systems for the Northern Great Plains. Annals of the Entomological Society of America, 91: 619625.
Esser, A.D., Milosavljević, I., and Crowder, D.W. 2015. Effects of neonicotinoids and crop rotation for managing wireworms in wheat crops. Journal of Economic Entomology, 108: 17861794.
Fahrig, L., Baudry, J., Brotons, L., Burel, F.G., Crist, T.O., Fuller, R.J., et al. 2011. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14: 101112.
Fahrig, L., Girard, J., Duro, D., Pasher, J., Smith, A., Javorek, S., et al. 2015. Farmlands with smaller crop fields have higher within-field biodiversity. Agriculture, Ecosystems and Environment, 200: 219234.
Flick, T., Feagan, S., and Fahrig, L. 2012. Effects of landscape structure on butterfly species richness and abundance in agricultural landscapes in eastern Ontario, Canada. Agriculture, Ecosystems and Environment, 156: 123133.
Flint, M.L. and Roberts, P.A. 1988. Using crop diversity to manage pest problems: some California examples. American Journal of Alternative Agriculture, 3: 163167.
Floate, K.D. 2011. Arthropods of the Canadian grasslands (Volume 2: inhabitants of a changing landscape). Biological Survey of Canada, Ottawa, Ontario, Canada.
Floate, K.D., Cárcamo, H.A., Blackshaw, R.E., Postman, B., and Bourassa, S. 2007. Response of ground beetle (Coleoptera: Carabidae) field populations to four years of Lepidoptera-specific Bt corn production. Environmental Entomology, 36: 12691274.
Floate, K.D., Elliot, R.H., Doane, J.F., and Gillott, C. 1989. Field bioassay to evaluate contact and residual toxicities of insecticides to carabid beetles (Coleoptera: Carabidae). Journal of Economic Entomology, 82: 15431547.
Floate, K.D., Shorthouse, J.D., Giberson, D.J., and Carcamo, H.A. 2017. Arthropods of Canadian grasslands: a retrospective of a 40-year project of the Biological Survey of Canada. The Canadian Entomologist,
French, B.W., Elliott, N.C., and Berberet, R.C. 1998. Reverting conservation reserve program lands to wheat and livestock production: effects on ground beetle (Coleoptera: Carabidae) assemblages. Environmental Entomology, 27: 13231335.
Gardiner, M.M., Landis, D.A., Gratton, C., Schmidt, N., O’Neal, M., Mueller, E., et al. 2009. Landscape composition influences patterns of native and exotic lady beetle abundance. Diversity and Distributions, 15: 554564.
Gardiner, M.M., Landis, D.A., Gratton, C., Schmidt, N., O’Neal, M., Mueller, E., et al. 2010. Landscape composition influences the activity density of Carabidae and Arachnida in soybean fields. Biological Control, 55: 1119.
Gillespie, R.L., Roberts, D.E., and Bentley, E.M. 1997. Population dynamics and dispersal of wheat curl mites (Acari: Eriophyidae) in north central Washington. Journal of the Kansas Entomological Society, 70: 361364.
Glasier, J.R.N. and Acorn, J.H. 2014. An annotated list of ants (Hymenoptera: Formicidae) from the grasslands of Alberta and Saskatchewan. In Arthropods of Canadian grasslands (Volume 4: biodiversity and systematics, part 2). Edited by D.J. Giberson and H.A. Cárcamo, Biological Survey of Canada Monographs 6, Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 299314.
Goulson, D. 2013. An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50: 977987.
Hall, P.W., Catling, P.M., and Lafontaine, J.D. 2011. Insects at risk in the prairie region. In Arthropods of the Canadian grasslands (Volume 2: inhabitants of a changing landscape). Edited by K. Floate. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 323349.
Hance, T. 2002. Impact of cultivation and crop husbandry practices. In The agroecology of carabid beetles. Edited by J.M. Holland. Intercept, Andover, United Kingdom. Pp. 231249.
Hardin, M.R., Benrey, B., Coll, M., Lamp, W.O., Roderick, G.K., and Barbosa, P. 1995. Arthropod pest resurgence: an overview of potential mechanisms. Crop Protection, 14: 318.
Harper, A.M. 1988. Insects and mites on alfalfa in Alberta. Technical Bulletin 1988-3E, Lethbridge Research Station Contribution Number 12. Agriculture Canada, Government of Canada, Ottawa, Ontario, Canada.
Haye, T., Mason, P.G., Gillespie, D.R., Miall, J.H., Gibson, G.A.P., Diaconu, A., et al. 2015. Determining the host specificity of the biological control agent Trichomalus perfectus (Hymenoptera: Pteromalidae): the importance of ecological host range. Biocontrol Science and Technology, 25: 2147.
Heron, J.M. 1996. The effect of grazing on ant (Hymenoptera: Formicidae) diversity in the south Okanagan grasslands. M.Sc. thesis. University of British Columbia, Vancouver, British Columbia, Canada.
Holland, J. and Fahrig, L. 2000. Effect of woody borders on insect density and diversity in crop fields: a landscape-scale analysis. Agriculture, Ecosystems and Environment, 78: 115122.
Holland, J.M. 2004. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agriculture, Ecosystems and Environment, 103: 125.
Holliday, N.J., Floate, K.D., Cárcamo, H., Pollock, D.A., Stjernberg, A., and Roughley, R.E. 2014. Ground beetles (Coleoptera: Carabidae) of the prairie grasslands of Canada. In Arthropods of Canadian grasslands (volume 4: biodiversity and systematics, part 2). Edited by D.J. Giberson and H.A. Cárcamo. Biological Survey of Canada Monograph Series 6. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 186.
Holt, R.D. 1977. Predation, apparent competition, and structure of prey communities. Theoretical Population Biology, 12: 197229.
Holzschultz, A., Dormann, C.F., Tscharntke, T., and Steffan-Dewenter, I. 2011. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society of London B: Biological Sciences, 278: 34443451.
Humble, S.M. 2001. Weeds and ground beetles (Coleoptera: Carabidae) as influenced by crop rotation type and crop input management. M.Sc. thesis. University of Manitoba, Winnipeg, Manitoba, Canada.
Hummel, J.D., Dosdall, L.M., Clayton, G.W., Harker, K.N., and O’Donovan, J.T. 2012. Ground beetle (Coleoptera: Carabidae) diversity, activity density, and community structure in a diversified agroecosystem. Environmental Entomology, 41: 7280.
Humphreys, I.C. and Mowat, D.J. 1994. Effect of some organic treatments on predators (Coleoptera: Carabidae) of cabbage root fly, Delia radicum (L.) (Diptera: Anthomyiidae), and on alternative prey species. Pedobiologia, 38: 513518.
Jonsen, I.D. and Fahrig, L. 1997. Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecology, 12: 185197.
Keane, R.M. and Crawley, M.J. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17: 164170.
Koch, R.L. and Galvan, T.L. 2008. Bad side of a good beetle: the North American experience with Harmonia axyridis . BioControl, 53: 2335.
Kremen, C. and M’Gonigle, L.K. 2015. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. Journal of Applied Ecology, 52: 602610.
Kromp, B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficiency, cultivation impacts and enhancement. Agriculture, Ecosystems and Environment, 74: 187228.
Kuhlmann, U., Mason, P.G., Hinz, H.L., Blossey, B., De Clerck-Floate, R.A., Dosdall, L.M., et al. 2006. Avoiding conflicts between insect and weed biological control: selection of non-target species to assess host specificity of cabbage seedpod weevil parasitoids. Journal of Applied Entomology, 130: 129141.
Landis, D.A. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18: 112.
Landis, D.A., Wratten, S.D., and Gurr, G.M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45: 175201.
Louda, S.M., Rand, T.A., Russell, F.L., and Arnett, A.E. 2005. Assessment of ecological risks in weed biocontrol: input from retrospective ecological analyses. Biological Control, 35: 253264.
Maisonhaute, J.-É., Labrie, G., and Lucas, E. 2017. Direct and indirect effects of the spatial context on the natural biocontrol of an invasive crop pest. Biological Control, 106: 6476.
Maisonhaute, J.-É., Peres-Neto, P., and Lucas, E. 2010. Influence of agronomic practices, local environment and landscape structure on predatory beetle assemblage. Agriculture, Ecosystems and Environment, 139: 500507.
Martens, J.R.T., Entz, M.H., and Wonneck, M.D. 2015. Redesigning Canadian prairie cropping systems for profitability, sustainability, and resilience. Canadian Journal of Plant Science, 95: 10491072.
Mason, P.G., De Clerck-Floate, R.A., Gallant, B., Gillespie, D.R., Floate, K., Bourchier, R., and Boivin, G. 2017. Guide for the first time importation and release of arthropod biocontrol agents in Canada. Agriculture and Agri-Food Canada Publication, Ottawa, Ontario, Canada.
Mason, P.G. and Gillespie, D.R. 2013. Biological control programmes in Canada 2001–2012. CABI Publishing, Wallingford, Oxon, United Kingdom.
McLaughlin, A. and Mineau, P. 1995. The impact of agricultural practices on biodiversity. Agriculture, Ecosystems and Environment, 55: 201212.
Melnychuk, N.A., Olfert, O., Youngs, B., and Gillott, C. 2003. Abundance and diversity of Carabidae (Coleoptera) in different farming systems. Agriculture, Ecosystems and Environment, 95: 6972.
Mitchell, M.G.E., Bennett, E.M., and Gonzalez, A. 2014. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services. Agriculture, Ecosystems and Environment, 192: 144151.
Olfert, O., Cárcamo, H., and Pepper, J. 2005. Insect pests and arthropod diversity in field margins of western Canada. In Field boundary habitats: implications for weed, insect and disease management. Topics in Canadian weed science, volume 1. Edited by A.G. Thomas. Canadian Weed Science Society, Sainte-Anne-de-Bellevue, Quebec, Canada. Pp. 135163.
Olfert, O., Johnson, G.D., Brandt, S.A., and Thomas, A.G. 2002. Use of arthropod diversity and abundance to evaluate cropping systems. Agronomy Journal, 94: 210216.
O’Neill, K.M., Olson, B.E., Rolston, M.G., Wallander, R., Larson, D.P., and Seibert, C.E. 2003. Effects of livestock grazing on rangeland grasshopper (Orthoptera: Acrididae) abundance. Agriculture, Ecosystems and Environment, 97: 5164.
Osler, G.H.R., Harrison, L., Kanashiro, D.K., and Clapperton, M.J. 2008. Soil microarthropod assemblages under different arable crop rotations in Alberta, Canada. Applied Soil Ecology, 38: 7178.
Pearson, D.E. and Callaway, R.M. 2003. Indirect effects of host-specific biological control agents. Trends in Ecology & Evolution, 18: 456461.
Pearson, D.E. and Callaway, R.M. 2005. Indirect nontarget effects of host-specific biological control agents: Implications for biological control. Biological Control, 35: 288298.
Pepper, J.L. 1999. Diversity and community assemblages of ground-dwelling beetles and spiders on fragmented grasslands of southern Saskatchewan. M.Sc. thesis. University of Regina, Regina, Saskatchewan, Canada.
Phillip, H. 2007. Biocontrol of the cereal leaf beetle [online]. In Minutes of the 47th annual meeting of the Western Committee of Crop Pests, Penticton, British Columbia, 18 October 2007 [online]. P. 5. Available from [accessed 25 March 2017].
Pimentel, D. 2009. Environmental and economic costs of the application of insecticides primarily in the United States. In Integrated pest management: innovation-development processes. Edited by R. Peshin and A.K. Dhawan. Springer Science and Business Media, Dordrecht, The Netherlands. Pp. 89111.
Price, P.W. 1976. Colonization of crops by arthropods: non-equilibrium communities in soybean fields. Environmental Entomology, 5: 605611.
Rand, T.A., Waters, D.K., Blodgett, S.L., Knodel, J.J., and Harris, M.O. 2014. Increased area of a highly suitable host crop increases herbivore pressure in intensified agricultural landscapes. Agriculture, Ecosystems and Environment, 186: 135143.
Richardson, R.J. 1982. The effects of habitat disturbance on the occurrence of carabid beetles. M.Sc. thesis. University of Manitoba, Winnipeg, Manitoba, Canada.
Ripper, W.E., Greenslade, R.M., and Lickerish, L.A. 1949. Combined chemical and biological control of insects by means of a systemic insecticide. Nature, 163: 787789.
Roberts, D.E. 2016. Classical biological control of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae) in Washington State and role of field insectaries, a review. Biocontrol Science and Technology, 26: 877893.
Robertson, L.N., Kettle, B.A., and Simpson, G.B. 1994. The influence of tillage practices on soil microfauna in a semiarid agroecosystem in northeastern Australia. Agriculture, Ecosystem and Environment, 48: 149152.
Rowe, J.S. 1990. Home place: essays on ecology. Canadian Parks and Wilderness Society. Henderson Book Series Number 12, NeWest Publishers Limited, Edmonton, Alberta, Canada.
Schellhorn, N.A., Gagic, V., and Bommarco, R. 2015. Time will tell: resource continuity bolsters ecosystem services. Trends in Ecology & Evolution, 30: 524530.
Schmidt, A.C., Fraser, L.H., Carlyle, C.N., and Bassett, E.R.L. 2012. Does cattle grazing affect ant abundance and diversity in temperate grasslands? Rangeland Ecology and Management, 65: 292298.
Schuman, G.E., Janzen, H.H., and Herrick, J.E. 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 116: 391396.
Sexson, D.L. and Wyman, J.A. 2005. Effect of crop rotation distance on populations of Colorado potato beetle (Coleoptera: Chrysomelidae): development of areawide Colorado potato beetle pest management strategies. Journal of Economic Entomology, 98: 716724.
Sheffield, C.S., Frier, S.D., and Dumesh, S. 2014. The bees (Hymenoptera: Apoidea, Apiformes) of the Prairies Ecozone, with comparisons to other grasslands of Canada. In Arthropods of Canadian grasslands (volume 4: biodiversity and systematics, part 2). Edited by D.J. Giberson and H.A. Cárcamo. Biological Survey of Canada Monograph Series 6. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 427467.
Shelton, A.M., Zhao, J.-Z., and Roush, R.T. 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology, 47: 845881.
Shorthouse, J.D. 2010. Ecoregions of Canada’s prairie grasslands. In Arthropods of Canadian grasslands, volume 1: ecology and interactions in grassland habitats. Edited by J.D. Shorthouse and K.D. Floate. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 5381.
Smith, R.G., Gross, K.L., and Robertson, G.P. 2008. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems, 11: 355366.
Spence, J.R. and Berg, N. 1984. Our beef and grassland beetles. Arthropods of Canadian Grasslands. Newsletter of Biological Survey of Canada (Terrestrial Arthropods), 2: 56.
Spencer, J.L., Hughson, S.A., and Levine, E. 2014. Insect resistance to crop rotation. In Insecticide resistance management: biology, economics, and prediction, 2nd edition. Edited by D.W. Onstad. Elsevier, London, United Kingdom. Pp. 233278.
Statistics Canada. 2012. CANSIM database, Table 004-0002 – Census of Agriculture, total area of farms and use of farm land, Canada and provinces [online]. Available from [accessed 17 February 2017].
Stern, V.M., Smith, R.F., van den Bosch, R., and Hagen, K.S. 1959. The integration of chemical and biological control of the spotted alfalfa aphid. Part I. The integrated control concept. Hilgardia, 29: 81101.
Stjernberg, A. 2011. The effect of twice-over rotational cattle grazing on the ground beetles (Coleoptera: Carabidae) and spiders (Araneae) on the Yellow Quill Mixed Grass Prairie Preserve. M.Sc. thesis. University of Manitoba, Winnipeg, Manitoba, Canada.
Suckling, D.M. and Sforza, R.F.H. 2014. What magnitude are observed non-target impacts from weed biocontrol? Public Library of Science One, 9: e84847.
Thies, C., Roschewitz, I., and Tscharntke, T. 2005. The landscape context of cereal aphid-parasitoid interactions. Proceedings of the Royal Society B: Biological Sciences, 272: 203210.
Theis, N. 2006. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. Journal of Chemical Ecology, 32: 917927.
Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Batary, P., DeClerck, F., Gratton, C., et al. 2016. When natural habitat fails to enhance biological pest control – five hypotheses. Biological Conservation, 204: 449458.
Tscharntke, T., Steffan-Dewenter, I., Kruess, A., and Thies, C. 2002. Contribution of small habitat fragments to conservation of insect communities of grassland-cropland landscapes. Ecological Applications, 12: 354363.
Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batáry, P., et al. 2012. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biological Reviews, 87: 661685.
Turnock, W.J., Wise, I.L., and Matheson, F.O. 2003. Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata . The Canadian Entomologist, 135: 391404.
Uddin, M.J. 2005. Insects of alfalfa in Manitoba with particular reference to Lygus spp., Adelphocoris lineolatus (Hemiptera: Miridae) and Acyrthosiphon pisum (Homoptera: Aphididae) and their natural enemies. Ph.D. thesis. University of Manitoba, Winnipeg, Manitoba, Canada.
van Herk, W.G. and Vernon, R.S. 2014. Click beetles and wireworms (Coleoptera: Elateridae) of Alberta, Saskatchewan, and Mantiba. In Arthropods of Canadian grasslands (volume 4): biodiversity and systematics, part 2. Edited by D.J. Giberson and H.A. Cárcamo. Biological Survey of Canada Monograph Series 6. Biological Survey of Canada, Ottawa, Ontario, Canada. Pp. 87–115.
Veres, A., Petit, S., Conord, C., and Lavigne, C. 2013. Does landscape composition affect pest abundance and their control by natural enemies? A review. Agriculture, Ecosystems and Environment, 166: 110117.
Werling, B.P., Dickson, T.L., Isaacs, R., Gaines, H., Gratton, C., Gross, K.L., et al. 2014. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proceedings of the National Academy of Sciences, 111: 16521657.
Wiedenmann, R.N. and Smith, J.W. 1997. Attributes of natural enemies in ephemeral crop habitats. Biological Control, 10: 1622.
Willis, R.B., Abney, M.R., Holmes, G.J., Schultheis, J.R., and Kennedy, G.G. 2010. Influence of preceding crop on wireworm (Coleoptera: Elateridae) abundance in the coastal plain of North Carolina. Journal of Economic Entomology, 103: 20872093.
Winston, R.L., Schwarzländer, M., Hinz, H.L., Day, M.D., Cock, M.J.W., and Julien, M.H. 2014. Biological control of weeds: a world catalogue of agents and their target weeds, 5th edition. FHTET-2014-04. Forest Health Technology Enterprise Team, United States Department of Agriculture Forest Service, Morgantown, West Virginia, United States of America.
Wise, I.L., Turnock, W.J., and Roughley, R.H. 2002. New records of coccinelline species in Manitoba (Coleoptera: Coccinellidae). Proceedings of the Entomological Society of Manitoba, 57: 510.
Wissinger, S.A. 1997. Cyclic colonization in predictably ephemeral habitats: a template for biological control in annual crop systems. Biological Control, 10: 415.
Yates, F. 1954. The analysis of experiments containing different crop rotations. Biometrics, 10: 324346.
Yates, M. and Andrew, N.R. 2011. Comparison of ant community composition across different land-use types: assessing morphological traits with more common methods. Australian Journal of Entomology, 50: 118124.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed