Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-03T15:14:54.520Z Has data issue: false hasContentIssue false

IMMEDIATE AND 2ND-YEAR EFFECTS OF INSECTICIDE SPRAY AND BAIT TREATMENTS ON POPULATIONS OF RANGELAND GRASSHOPPERS1

Published online by Cambridge University Press:  31 May 2012

Mark A. Quinn
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, South Dakota, USA57007
R.L. Kepner
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, South Dakota, USA57007
D.D. Walgenbach
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, South Dakota, USA57007
R.A. Bohls
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, South Dakota, USA57007
P.D. Pooler
Affiliation:
Department of Plant Science, South Dakota State University, Brookings, South Dakota, USA57007
R. Nelson Foster
Affiliation:
USDA/APHIS, Methods Development, Pink Bollwom and Range Pests Station, 4125 E. Broadway Road, Phoenix, Arizona, USA85040
K.C. Reuter
Affiliation:
USDA/APHIS, Methods Development, Pink Bollwom and Range Pests Station, 4125 E. Broadway Road, Phoenix, Arizona, USA85040
J.L. Swain
Affiliation:
USDA/APHIS, Methods Development, Pink Bollwom and Range Pests Station, 4125 E. Broadway Road, Phoenix, Arizona, USA85040

Abstract

Two, 1400-ha blocks of rangeland in western South Dakota were treated aerially with malathion liquid spray or carbaryl – bran bait in early July 1986 to determine the immediate and 2nd-year impact of treatments on grasshopper populations. Total grasshopper populations were reduced by 92 and 47% in the malathion and carbaryl – bran bait treatment plots, respectively, within 48 h after treatment and remained at a low level throughout the summer. Populations did not change in the control plots. Populations of the two most abundant species, Ageneotettix deorum (Scudder) and Melanoplus sanguinipes (F.), declined by 65 and 87%, respectively, in the carbaryl – bran bait plots but populations of bran "rejectors" (predominantly Trachyrhachys kiowa [Thomas]) did not change.

Densities of the bran "acceptors" (Melanoplus spp., Phoetaliotes nebrascensis [Thomas], and A. deorum), as a group, did not change significantly in the control plots between the pre-treatment and July 1987 sampling dates. Densities within both sets of treatment plots were significantly lower in the 2nd year of the study than on the pre-treatment sampling date. Although 2nd-year populations of bran acceptors, as a group, did not increase to pre-treatment levels in the treated plots, populations of M. sanguinipes did increase to pre-treatment levels in both sets of treatment plots. Populations of bran rejectors generally remained low in treatment and control plots.

Analysis of covariance of the densities of 2nd-year populations of total grasshoppers and bran rejectors indicated that treatment had no significant effect on populations of these grasshoppers, but the covariable, pre-treatment density, was significantly correlated with 2nd-year densities. Densities of 2nd-year populations of bran acceptors were also significantly correlated with pre-treatment densities.

It was concluded that both the insecticidal spray and bait were effective in controlling most economically important species of rangeland grasshoppers. Although both treatments may have suppressed populations of bran acceptors, as a group, in the 2nd year of the study, neither suppressed populations of M. sanguinipes which increased to pre-treatment levels regardless of treatment. The effect of treatments on 2nd-year populations of bran rejectors could not be determined because populations of this group also declined in control plots.

Résumé

Deux blocs de 1400 ha de pâturage dans l’ouest du Dakota Sud ont été traités par air avec du malathion liquide pulvérisé ou du carbaryl sous forme d’appât au son, au début juillet 1986. L’étude avait pour objectif d’établir l’impact immédiat de ces traitements sur les populations de criquets, de même que 1 ans après l’application. Dans les 48 h après traitement, les densités totales de criquets ont été réduites de 92 et 47% dans les blocs malathion et carbaryl–son, et elles sont restées faibles pendant tout l’été. Les densités n’ont pas été affectées dans les parcelles témoins. Les densités des deux espèces dominantes, Ageneotettix deorum (Scudder) et Melanoplus sanguinipes (F.), ont diminué de 65 et 87% dans les parcelles carbaryl–son, mais les populations d’espèces rejetant le son (surtout Trachyrhachys kiowa [Thomas]) n’ont pas changé.

La densité combinée des espèces acceptant le son (Melanoplus spp., Phoetaliotes nerbrascensis [Thomas] et A. deorum), n’a pas changé significativement dans les parcelles témoins entre la période pré-traitement et les dates d’échantillonnage de juillet 1987. Leurs densités dans les deux séries de parcelles traitées étaient significativement plus faibles à la seconde année de l’étude, qu’à la date d’échantillonnage pré-traitement. Quoiqu’en seconde année les densités du groupe d’espèces acceptant le son n’aient pas rejoint les niveaux pré-traitement dans les deux séries de parcelles traitées, les densités de M. sanguinipes sont retournée aux niveaux pré-traitement dans les deux séries de parcelles traitées. Les populations d’espèces rejetant le son sont restées généralement faibles dans les parcelles témoins et traitées.

L’analyse de covariance des densités après 1 ans pour l’ensemble des criquets et les espèces rejetant le son a indiqué que le traitement n’a pas eu d’effet significatif sur les populations de ces criquets, mais que la covariable densité pré-traitement était significativement corrélée avec la densité 1 ans après. Pour les espèces acceptant le son, les densités 1 ans après étaient également corrélées significativement avec les densités pré-traitement.

On a conclu que la pulvérisation et l’appât empoisonné sont efficaces pour la répression économique des principaux criquets ravageurs des pâturages. Quoique les deux types de traitement aient permis de réprimer les densités des espèces acceptant le son prises comme groupe après 1 ans, aucun des traitements n’a réduit la densité de M. sanguinipes qui a rejoint les niveaux pré-traitement sans égard au traitement. L’effet des traitements après 1 ans sur les populations d’espèces rejetant le son n’a pu être établi parce que leurs densités ont aussi diminué dans les parcelles témoins.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, N.L. 1964. Some relationships between grasshoppers and vegetation. Ann. ent. Soc. Am. 57: 736742.CrossRefGoogle Scholar
Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W.. 1977. Discrete Multivariate Analysis: Theory and Practice. The MIT Press, Cambridge, MA.Google Scholar
Blickenstaff, C.C., Skoog, F.E., and Daum, R.J.. 1974. Long-term control of grasshoppers. J. econ. Ent. 67: 268274.CrossRefGoogle Scholar
Capinera, J.L., and Sechrist, T.S.. 1982. Grasshopper (Acrididae) of Colorado: identification, biology and management. Colo. State Univ. Agric. Exp. Stn. Bull. 584S.Google Scholar
Ewen, A.B., and Mukerji, M.K.. 1987. Field evaluation of carbofuran bait against grasshopper (Orthoptera: Acrididae) populations in Saskatchewan. Can. Ent. 119: 537540.CrossRefGoogle Scholar
Foster, R.N., Onsager, J.A., Reuter, K.C., and Roland, T.. 1985. Field evaluation of an aqueous formulation of carbaryl for rangeland grasshopper control, 1983. Insecticide Acaracide Tests 10: 237.CrossRefGoogle Scholar
Foster, R.N., Reuter, K.C., Gourd, J.M., Enis, P.J., and Wooldridge, A.W.. 1983. Field experiments on the toxicity of acephate for control of grasshoppers (Orthoptera: Acrididae) on rangeland. Can. Ent. 115: 11631168.CrossRefGoogle Scholar
Foster, R.N., and Roland, T.J.. 1986. Grasshopper suppression: techniques for ultra low volume applications of carbaryl, wheat bran baits. pp. 6873in Proc. Grasshopper Symp., Bismarck, North Dakota.Google Scholar
Henry, J.E. 1971. Experimental application of Nosema locustae for control of grasshoppers. J. Invertebr. Pathol. 18: 389394.CrossRefGoogle Scholar
Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187211.CrossRefGoogle Scholar
Isley, F.B. 1937. Seasonal succession, soil relations, numbers, and regional distribution of northeastern Texan acridians. Ecol. Monogr. 7: 317344.CrossRefGoogle Scholar
Javadi, I., and Knutson, H.. 1979. Toxicities of three insecticides to five species of grasshopper nymphs. J. econ. Ent. 72: 906908.CrossRefGoogle Scholar
Joern, A. 1979. Feeding patterns in grasshoppers (Orthoptera: Acrididae): factors influencing diet specialization. Oecologia 38: 325347.CrossRefGoogle ScholarPubMed
Joern, A. 1982. Distribution, densities, and relative abundances of grasshoppers (Orthoptera: Acrididae) in a Nebraska sandhills prairie. Prairie Natur. 14: 3745.Google Scholar
Johnson, D.L. 1989. Spatial analysis of the relationship of grasshopper outbreaks to soil classification. pp. 357370in McDonald, L.L., Manly, B.F., Lockwood, J.A., and Logan, J. (Eds.), Estimation and Analysis of Insect Populations. Springer-Verlag, New York.Google Scholar
Johnson, D.L., Hill, B.D., Hinks, C.F., and Schaalje, G.B.. 1986. Aerial application of the pyrethroid deltamethrin for grasshopper (Orthoptera: Acrididae) control. J. econ. Ent. 79: 181188.CrossRefGoogle Scholar
Johnson, D.L., and Pavlikova, E.. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). J. Invertebr. Pathol. 48: 232238.CrossRefGoogle Scholar
McCaffrey, A.R. 1975. Food quality and quantity in relation to egg production in Locusta migratoria migratorioides. J. Insect Physiol. 21: 15511558.CrossRefGoogle Scholar
McDonald, S. 1967. Oral toxicity of 23 insecticides to grasshoppers in the laboratory and the influence of species, pre-treatment, and geographical distribution. J. econ. Ent. 60: 844849.CrossRefGoogle Scholar
Mukerji, M.K., and Ewen, A.B.. 1984. Field evaluation of cypermethrin and carbaryl as sprays and baits for grasshopper (Orthoptera: Acrididae) controls in Saskatchewan. Can. Ent. 116: 59.CrossRefGoogle Scholar
Mukerji, M.K., Ewen, A.B., Craig, C.H., and Ford, R.J.. 1981. Evaluation of insecticide-treated bran baits for grasshopper control in Saskatchewan (Orthoptera: Acrididae). Can. Ent. 113: 705710.CrossRefGoogle Scholar
Mulkern, G.B., Toczek, D.R., and Brusven, M.A.. 1964. Biology and ecology of North Dakota grasshoppers. II. Food habits and preference of grasshoppers associated with the sand hills prairie. N. Dakota Agric. Exp. Stn. Res. Rep. 11.Google Scholar
Onsager, J.A. 1978. Efficacy of carbaryl applied to different life stages of rangeland grasshoppers. J. econ. Ent. 71: 269273.CrossRefGoogle Scholar
Onsager, J.A., and Henry, J.E.. 1977. A method for estimating the density of rangeland grasshoppers (Orthoptera, Acrididae) in experimental plots. Acrida 6: 231237.Google Scholar
Onsager, J.A., Henry, J.E., and Foster, R.N.. 1980 a. A model for predicting efficacy of carbaryl bait for control of rangeland grasshoppers. J. econ. Ent. 73: 726729.CrossRefGoogle Scholar
Onsager, J.A., Henry, J.E., Foster, R.N., and Staten, R.T.. 1980 b. Acceptance of wheat bran bait by species of rangeland grasshoppers. J. econ. Ent. 73: 548551.CrossRefGoogle Scholar
Onsager, J.A., Rees, N.E., Henry, J.E., and Foster, R.N.. 1981. Integration of bait formulations of Nosema locustae and carbaryl for control of rangeland grasshoppers. J. econ. Ent. 74: 183187.CrossRefGoogle Scholar
Pfadt, R.E. 1977. Some aspects of the ecology of grasshopper populations inhabiting the shortgrass plains. Minn. Agric. Exp. Stn. Bull. 310: 7379.Google Scholar
Pfadt, R.E. 1982. Density and diversity of grasshoppers (Orthoptera: Acrididae) in an outbreak on Arizona rangeland. Environ. Ent. 11: 690694.CrossRefGoogle Scholar
Pfadt, R.E., and Smith, D.S.. 1972. Net reproductive rate and capacity for increase of the migratory grasshopper, Melanoplus sanguinipes sanguinipes (F.). Acrida 1: 149165.Google Scholar
Pickford, R. 1962. Development, survival and reproduction of Melanoplus bilituratus (Wlk.) (Orthoptera: Acrididae) reared on various food plants. Can. Ent. 94: 859869.CrossRefGoogle Scholar
Pickford, R. 1963. Wheat crops and native prairie in relation to the nutritional ecology of Camnula pellucida (Scudder) (Orthoptera: Acrididae) in Saskatchewan. Can. Ent. 95: 764770.CrossRefGoogle Scholar
Prescott, H.W. 1960. Suppression of grasshoppers by nemestrinid parasites. Ann. ent. Soc. Am. 53: 513521.CrossRefGoogle Scholar
Richards, O.W., and Waloff, N.. 1954. Studies on the biology and population dynamics of British grasshoppers. Anti-locust Bull. 17.Google Scholar
Rogers, L.E., Woodley, N., Sheldon, J.K., and Uresk, V.A.. 1978. Darkling beetle populations (Tenebrionidae) of the Hanford site in southcentral Washington. Report PNL-2465, Battelle, Pacific Northwest Laboratory, Richland, WA.Google Scholar
SAS Institute. 1985. User's Guide. SAS Institute, Cary, NC.Google Scholar
Smith, D.S. 1966. Fecundity and oviposition in the grasshoppers Melanoplus sanguinipes (F.) and Melanoplus bivittatus (Say). Can. Ent. 98: 617621.CrossRefGoogle Scholar
Smith, D.S., and Northcott, F.E.. 1951. The effects on the grasshopper, Melanoplus mexicanus mexicanus (Sauss.) (Orthoptera: Acrididae), of varying the nitrogen content in its food plant. Can. J. Zool. 29: 297304.CrossRefGoogle Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. W.H. Freeman and Company, San Francisco, CA.Google Scholar
Stower, W.J., and Greathead, D.J.. 1969. Numerical changes in a population of the desert locust, with special reference to factors responsible for mortality. J. Appl. Ecol. 33: 203235.CrossRefGoogle Scholar
USDA. 1987. Rangeland grasshopper cooperative management program. Final environmental impact statement. U.S. Department of Agriculture, Washington, DC.Google Scholar