Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-28T03:44:31.388Z Has data issue: false hasContentIssue false

EVALUATION OF FACTORS AFFECTING TREE AND STAND SUSCEPTIBILITY TO THE DOUGLAS-FIR BEETLE (COLEOPTERA: SCOLYTIDAE)

Published online by Cambridge University Press:  31 May 2012

T.L. Shore*
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 W. Burnside Rd., Victoria, British Columbia, Canada V8Z 1M5
L. Safranyik
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 W. Burnside Rd., Victoria, British Columbia, Canada V8Z 1M5
W.G. Riel
Affiliation:
Canadian Forest Service, Natural Resources Canada, 506 W. Burnside Rd., Victoria, British Columbia, Canada V8Z 1M5
M. Ferguson
Affiliation:
Timberland Consultants Ltd., 2620 Granite Rd., Box 171, Nelson, British Columbia, Canada V1L 5P9
J. Castonguay
Affiliation:
BC Ministry of Forests, RR#1 1907 Ridgewood Rd., Nelson, British Columbia V1L 5P4, Canada
*
1Author to whom all correspondence should be addressed (E-mail: tshore@pfc.forestry.ca).

Abstract

Tree and site characteristics were compared between 19 groups of Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), infested by Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, and 19 uninfested groups to identify individual or combinations of characteristics associated with Douglas-fir beetle attacks. Of the tree characteristics, diameter, height, age, phloem thickness, bark thickness, and a standardized variable consisting of diameter divided by the last 10 years growth rate (DBHTYG) showed significant differences. None of the site characteristics showed significant differences between infested and uninfested areas. Two models, identified through discriminant analysis, placed 84 and 87% of the data in the correct infestation groups. These models included the variables diameter, height, phloem thickness, aspect, and DBHTYG in various combinations. The results were confirmed using a jackknifed cross-validation approach. These variables have potential for use in the development of a biological process model of tree and stand susceptibility to the Douglas-fir beetle.

Résumé

Les auteurs ont comparé les caractéristiques liées aux arbres et aux sites de 19 groupes de douglas, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), infestés par le dendroctone du douglas, Dendroctonus pseudotsugae Hopkins, à celles de 19 autres groupes de douglas non infestés en vue d’identifier les caractéristiques ou les ensembles de caractéristiques reflétant une prédisposition aux attaques par le ravageur. Parmi les caractéristiques liées aux arbres, des différences significatives ont été relevées dans le cas du diamètre, de la hauteur, de l’âge, de l’épaisseur du phloème, de l’épaisseur de l’écorce et d’une variable normalisée déterminée par le rapport du diamètre au rythme de croissance des dix dernières années (DBHTYG). Dans le cas des caractéristiques liées aux sites, aucune différence significative n’a été relevée entre les sites infestés et les sites non infestés. Deux modèles, établis par analyse discriminante, ont permis de ranger 84 et 87% des données dans les groupes d’infestation appropriés. Ces modèles intégraient les variables diamètre, hauteur, épaisseur du phloème, aspect et DBHTYG en diverses combinaisons. Les résultats ont été confirmés par validation croisée à l’aide de la méthode du jacknife. Ces variables pourraient orienter l’élaboration d’un modèle des processus biologiques influant sur la vulnérabilité des arbres et des peuplements au dendroctone du douglas.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amman, G.D. 1972. Mountain pine beetle brood production in relation to thickness of lodgepole pine phloem. Journal of Economic Entomology 65: 138–40CrossRefGoogle Scholar
Anonymous, 1996. Systat 6.0 for Windows. Chicago: SPSS Inc.Google Scholar
Bartos, D.L., Amman, G.D. 1989. Microclimate: an alternative to tree vigor as a basis for mountain pine beetle infestations. USDA, Forest Service, Intermountain Research Station, Research Paper INT–400Google Scholar
Beal, J.A. 1934. Relation of air and bark temperature of infested ponderosa pine during sub-zero weather. Journal of Economic Entomology 27: 1132–9CrossRefGoogle Scholar
Berryman, A.A. 1976. Theoretical explanation of mountain pine beetle dynamics in lodgepole pine forests. Environmental Entomology 5: 1225–33CrossRefGoogle Scholar
Braumandl, T.F., Curran, M.P. (compilers). 1992. A field guide for site identification and interpretation for the Nelson Forest Region. British Columbia Ministry of Forests, Nelson BC, Land Management Handbook 20Google Scholar
Cabrera, H. 1978. Phloem structure and development in lodgepole pine. pp. 5463in Berryman, A.A., Amman, G.D., Stark, R.W. (Eds.), Theory and practice of mountain pine beetle management in lodgepole pine forests. Washington: University of Idaho/USDA Forest ServiceGoogle Scholar
Furniss, M.M., McGregor, M.D., Foiles, M.W., Partridge, A.D. 1979. Chronology and characteristics of a Douglas-fir beetle outbreak in northern Idaho. USDA Forest Service, General Technical Report INT–59Google Scholar
Furniss, M.M., Livingston, R.L., McGregor, M.D. 1981. Development of a stand susceptibility classification for Douglas-fir beetle. USDA Forest Service, General Technical Report WO–27: 115–28Google Scholar
Hard, J.S. 1985. Spruce beetles attack slowly growing spruce. Forest Science 31: 839–50Google Scholar
Hedden, R.L. 1981. Hazard-rating system development and validation: an overview. USDA Forest Service, General Technical Report WO–27: 912Google Scholar
Lessard, E.D., Schmid, J.M. 1990. Emergence, attack densities, and host relationships for the Douglas-fir beetle (Dendroctonus pseudotsugae Hopkins) in northern Colorado. Great Basin Naturalist 50: 333–8Google Scholar
MacLean, D.A., Shore, T.L. 1996. Preface. Canada – British Columbia Partnership on Forest Resource Development, FRDA II Report No. 260: iii–ivGoogle Scholar
Mahoney, R.L. 1978. Lodgepole pine/mountain pine beetle risk classification methods and their application. pp. 106–13 in Berryman, A.A., Amman, G.D., Stark, R.W. (Eds.), Theory and practice of mountain pine beetle management in lodgepole pine forests. Washington: University of Idaho/USDA Forest ServiceGoogle Scholar
McMullen, L.H. 1984. Douglas-fir beetle in British Columbia. Environment Canada, Canadian Forestry Service, Pacific Forestry Centre, Pest Leaflet 14Google Scholar
Meidinger, D., Pojar, J. (editors). 1991. Ecosystems of British Columbia. Province of British Columbia, Ministry of Forests, Research Branch, Special Report Series No. 6Google Scholar
Negron, J.F. 1998. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range. Forest Ecology and Management 107: 7185CrossRefGoogle Scholar
Person, H.L. 1928. Tree selection by the western pine beetle. Journal of Forestry 26: 564–78Google Scholar
Ross, D.W., Daterman, G.E. 1997. Integrating pheromone and silvicultural methods for managing the Douglas-fir beetle. USDA Forest Service, Northeastern Experiment Station, General Technical Report NE–236: 135–45Google Scholar
Rudinsky, J.A. 1966. Host selection and invasion by the Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins, in coastal Douglas-fir forests. The Canadian Entomologist 98: 98111CrossRefGoogle Scholar
Safranyik, L., Shrimpton, D.M., Whitney, H.S. 1974. Management of lodgepole pine to reduce losses from the mountain pine beetle. Environment Canada, Canadian Forestry Service, Forestry Technical Report 1Google Scholar
Shepherd, R.F. 1966. Factors influencing the orientation and rates of activity of Dendroctonus ponderosae Hopkins (Coleoptera: Scolytidae). The Canadian Entomologist 98: 507–18CrossRefGoogle Scholar
Shore, T.L., Safranyik, L. 1992. Susceptibility and risk rating systems for the mountain pine beetle in lodge-pole pine stands. Forestry Canada, Pacific Forestry Centre, Information Report BC–X–336Google Scholar
Shore, T.L., Riel, W.G., Safranyik, L. 1996. A decision support system for the mountain pine beetle in lodgepole pine stands. Canada – British Columbia Partnership on Forest Resource Development, FRDA II Report 260: 2530Google Scholar
Shrimpton, D.M. 1973. Age- and size-related response of Lodgepole Pine to inoculation with Europhium clavigerum. Canadian Journal of Botany 51: 1155–60CrossRefGoogle Scholar
Walters, J. 1955. A system of indirect control of the Douglas-fir beetle, Dendroctonus pseudotsugae Hopk. Canada Department of Agriculture, Science Service, Forest Biology Laboratory, Vernon BC. Interim Rep. 1954–1 (also Masters of Forestry thesis, University of British Columbia, December 1954)Google Scholar
Walters, J. 1956. Biology and control of the Douglas-fir beetle in the interior of British Columbia. Canada Department of Agriculture, Science Service, Forest Biology Division, Publication 975Google Scholar
Wilkinson, L., Blank, G., Gruber, C. 1996. Desktop data analysis with SYSTAT. Englewood Cliffs: Prentice HallGoogle Scholar