Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T17:44:44.994Z Has data issue: false hasContentIssue false

EFFECTS OF TEMPERATURE DURING EMBRYOGENESIS ON EMBRYOGENESIS, EMBRYO SURVIVAL, AND EGG HATCHING IN THE RED TURNIP BEETLE, ENTOMOSCELIS AMERICANA (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

G.H. Gerber
Affiliation:
Agriculture Canada, Research Station, 195 Dafoe Road, Winnipeg, Manitoba R3T 2M9

Abstract

Embryogenesis, embryo survival, and hatching were studied in eggs of the red turnip beetle, Entomoscelis americana Brown, incubated at 9 constant temperatures (5–35 °C) for 5–50 days before cold storage at −5 °C for 200 days during winter. Embryogenesis occurred at all temperatures tested, but the threshold and upper limit for embryogenesis were near 5 and 35 °C, respectively, and the optimum-temperature range was about 12.5–20 °C. Embryo survival was about 12–65% lower in eggs incubated at 5 °C for 50 days and at 7.5 and 10 °C for 30–50 days than in those incubated at these temperatures for shorter times, indicating that prolonged exposure to temperatures near the threshold during embryogenesis adversely affects the embryos. Embryo survival declined to low levels in eggs incubated at 25 and 30 °C for more than 30 and 5 days, respectively, and only a small number of embryos survived in those incubated at 35 °C for 5 days. The times to 50% hatch in eggs that contained late-stage embryos before cold storage and had been incubated at 25, 30, and 35 °C were 1.6, 2.6, and 6.5 times longer, respectively, than in those at 12.5–20 °C. These results indicate that embryos incubated at 25–35 °C during embryogenesis before diapause require a recovery period before initiating the normal postdiapause events, and that these events can be adversely affected by unfavorably high temperatures before diapause. The physiological and ecological significance of the data is discussed.

Résumé

On a étudié l'embryogénèse, la survie embryonnaire et l'éclosion chez les oeufs de la chrysomèle du navet, Entomoscelis americana Brown, incubés à 9 températures constantes (5–35 °C) pendant 5–50 jours avant d'être remisés au froid à −5 °C pendant 200 jours durant l'hiver. L'embryogenèse a eu lieu à toutes les températures testées, mais le seuil et la limite supérieure du développement embryonnaire se situaient près de 5 et 35 °C respectivement, l'écart optimum se situant à 12,5–20 °C. La survie embryonnaire a été réduite de 12 à 65% chez les oeufs incubés à 5 °C pendant 50 jours et à 7,5 et 10 °C pendant 30–50 jours, par rapport aux oeufs incubés à ces températures pour des temps plus courts, indiquant qu'une exposition prolongée à des températures près du seuil durant l'embryogenèse affecte négativement les embryons. La survie embryonnaire a atteint de bas niveaux chez des oeufs incubés à 25 et 30 °C pour plus de 30 et 5 jours, respectivement, et seuls quelques embryons ont survécu parmi ceux incubés à 35 °C pendant 5 jours. Les temps requis pour atteindre 50% d'éclosion chez des oeufs contenant déjà des embryons avancés avant l'exposition au froid et ayant été incubés à 25, 30 et 35 °C, se sont avérés 1,6, 2,6 et 6,5 fois plus longs que chez ceux incubés à 12,5–20 °C. Ces résultats indiquent que les embryons incubés à 25–35 °C durant l'embryogenèse précédant la diapause ont besoin d'une période de récupération avant que ne puissent se dérouler les événements postérieurs à la diapause, et que ces événements peuvent être affectés de façon adverse par des températures trop élevées avant la diapause. La signification physiologique et écologique de ces données est examinée.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, S.D., Cloutier, E.J., and McLeod, D.G.R.. 1963. Photoperiod and insect development. pp. 43–64 in Brookes, V.J. (Ed.), Insect Physiology. Proc. 23rd A. Biol. Colloquium, Oregon State Univ. Press, Corvallis.Google Scholar
Bryson, R.A., and Hare, F.K.. 1974. World Survey of Climatology. Vol. 11. Climates of North America. Elsevier Scientific Publishing Co., London and New York.Google Scholar
Bucher, G.E., Lamb, R.J., and Bracken, G.K.. 1981. Temperature profiles in a rape field before and after harvest. Can. J. Soil Sci. 61: 145156.CrossRefGoogle Scholar
Bursell, E. 1974. Environmental aspects—temperature. pp. 141in Rockstein, M. (Ed.), The Physiology of Insects, Second Ed. Vol. II. Academic Press, Inc., NY.Google Scholar
Chapman, R.F. 1982. The Insects: Structure and Function, 3rd Ed. Harvard Univ. Press, Cambridge.Google Scholar
Environment Canada. 1982 a. Climate normals 1951–80, Winnipeg Int'l A., Man. Environ. Can., Atmosph. Environ. Serv., Ottawa. N.S. 4–82. 7 pp.Google Scholar
Environment Canada. 1982 b Canadian climate normals 1951–80, temperature and precipitation, Prairie Provinces. Environ. Can., Atmosph. Environ. Serv., Ottawa. U.D.C. 551.582 (712). 429 pp.Google Scholar
Environment Canada. 1984. Winnipeg, Manitoba 1983: precipitation, temperature, sun and moon tables. Environ. Can., Atmosph. Environ. Serv., Winnipeg. 30 pp.Google Scholar
Geiger, R. 1965. The Climate Near the Ground. Harvard Univ. Press, Cambridge.Google Scholar
Gerber, G.H. 1982. A pest management system for the red turnip beetle on rapeseed and canola. Can. Agric. 27(3): 811.Google Scholar
Gerber, G.H. 1984 a. Influence of date of oviposition on egg hatching and embryo survival in the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Can. Ent. 116: 645652.CrossRefGoogle Scholar
Gerber, G.H. 1984 b. The distribution of the red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Can. Agric. Insect Pest Rev. 61(1983): 3947.Google Scholar
Gerber, G.H., and Lamb, R.J.. 1982. Phenology of egg hatching for the red turnip beetle, Entomoscelis americana (Coleoptera: Chrysomelidae). Environ. Ent. 11: 12581263.CrossRefGoogle Scholar
Hare, F.K., and Thomas, M.K.. 1979. Climate Canada. Wiley, Toronto.Google Scholar
Howe, R.W. 1967. Temperature effects on embryonic development in insects. A. Rev. Ent. 12: 1542.CrossRefGoogle ScholarPubMed
Kendrew, W.G., and Currie, B.W.. 1955. The Climate of Central Canada. Queen's Printer, Ottawa. 194 pp.Google Scholar
Lamb, R.J., Gerber, G.H., and Atkinson, G.F.. 1984. Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environ. Ent. 13: 868872.CrossRefGoogle Scholar
Stewart, D.B. 1973. The red turnip beetle, Entomoscelis americana Brown (Coleoptera: Chrysomelidae), biology and plant relationships. M.Sc. Thesis, Univ. Alberta, Edmonton. 86 pp.Google Scholar
Vaartaja, O. 1949. High surface soil temperatures. Oikos 1: 628.CrossRefGoogle Scholar