Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:47:21.240Z Has data issue: false hasContentIssue false

EFFECTS OF CLIMATE AND FOREST STRUCTURE ON DURATION OF FOREST TENT CATERPILLAR OUTBREAKS ACROSS CENTRAL ONTARIO, CANADA

Published online by Cambridge University Press:  31 May 2012

Jens Roland
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
Brendan G. Mackey
Affiliation:
Department of Geography, The Australia National University, Canberra ACT 0200, Australia
Barry Cooke
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9

Abstract

We examined the effect of forest structure and climate on large-scale and long-term patterns of outbreaks of forest tent caterpillar, Malacosoma disstria Hbn., across central Ontario. This was done using previously published data on outbreak duration and forest heterogeneity, combined with high-resolution climatic data simulated by the recently developed Ontario Climate Model. Our analysis, which eliminates some of the spatially confounding effects of forest structure and climate, suggests that both the predicted long-term temperature minimum for the coldest month and the predicted growing degree-days in the first 6 weeks of the growing season are important determinants of outbreak duration, with colder weather being associated with shorter outbreaks. Forest heterogeneity accounts for more variation in outbreak duration than either of the climatic variables.

Résumé

Nous examinons l’effet de deux types de facteurs, l’hétérogénéité de la forêt et le climat, sur les patterns à long-terme des épidémies de la livrée de la forêt, Malacosoma disstria Hbn., dans la région centrale de la province de l’Ontario, Canada. L’analyse spatiale présentée ici considère simultanément des données forestière et épidémique extraites de la littérature, et de nouvelles données climatiques simulées à fine-échelle avec un nouveau modèle climatique pour l’Ontario. Notre analyse, qui élimine l’effet géographiquement confondant de l’hétérogénéité de la forêt et le climat, démontre que deux indices climatiques, la température minimum quotidienne attendue pendant l’hiver et le nombre attendu de degrés-jours depuis le début du printemps, sont importants en expliquant la variation spatiale dans la durée des épidémies, la froidesse étant associée à de courtes épidémies. Néanmoins, l’hétérogénéité de la forêt explique plus de variation que ces deux indices climatiques.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batzer, H.O. 1955. Some effects of defoliation of aspen, Populus tremuloides Michx., stands in northern Minnesota by the forest tent caterpillar, Malacosoma disstria Hbn., with notes on parasitism of cocoons by Sarcophaga aldrichi Park., and cocooning habits of the host. M.Sc. thesis, University of Minnesota, St. Paul, MN.Google Scholar
Berryman, A.A. 1973. Population dynamics of the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae). I. Analysis of population behavior and survival from 1964 to 1971. The Canadian Entomologist 105: 14651488.CrossRefGoogle Scholar
Blais, J.R., Prentice, R.M., Sippell, W.L., and Wallace, D.R.. 1955. Effects of weather on the forest tent caterpillar, Malacosoma disstria Hbn., in central Canada in the spring of 1953. The Canadian Entomologist 87: 18.CrossRefGoogle Scholar
Daniel, C.J., and Myers, J.H.. 1995. Climate and outbreaks of the forest tent caterpillar. Ecography 18: 353362.CrossRefGoogle Scholar
Fitzgerald, T.D. 1995. The tent caterpillars. Cornell University Press, Ithaca, NY.Google Scholar
Gautreau, E.J. 1964. Unhatched forest tent caterpillar egg bands in northern Alberta associated with late spring frost. Canadian Department of Forestry Forest Entomology and Pathology Branch Bi-monthly Progress Report 20: 3.Google Scholar
Hanec, A.C. 1966. Cold-hardiness in the forest tent caterpillar, Malacosoma disstria Hübner (Lasiocampidae; Lepidoptera). Journal of Insect Physiology 12: 14431449.CrossRefGoogle Scholar
Hodson, A.C. 1977. Some aspects of forest tent caterpillar population dynamics. pp. 4–16 in Kulman, H.M., and Chaing, H.C. (Eds.), Insect ecology: papers presented in the H.C. Hodson ecology lectures. University of Minnesota Agriculture Experiment Station Technical Bulletin 310.Google Scholar
Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54: 187211.CrossRefGoogle Scholar
Ives, W.G.H. 1971. The forest tent caterpillar in Alberta. Environment Canada Forest Service Internal Report NOR–4.Google Scholar
Ives, W.G.H. 1973. Heat units and outbreaks of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist 105: 529543.CrossRefGoogle Scholar
Kruess, A., and Tscharntke, T.. 1994. Habitat fragmentation, species loss, and biological control. Science (Washington, D.C.) 264: 15811584.CrossRefGoogle ScholarPubMed
Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm. Ecology 74: 16591673.CrossRefGoogle Scholar
Legendre, P., and Trousellier, M.. 1988. Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnological Oceanography 33: 10551067.CrossRefGoogle Scholar
Mackey, B., McKenney, D.W., Yang, Y.-Q., McMahon, J.P., and Hutchinson, M.F.. 1996. Site regions revisited: a climatic analysis of Hills' site regions for the province of Ontario using a parametric method. Canadian Journal of Forest Science 26: 333354.CrossRefGoogle Scholar
Morris, O.N. 1963. The natural and artificial control of the Douglas-fir tussock moth, Orygia pseudotsugata McDunnough, by a nuclear polyhedrosis virus. Journal of Insect Pathology 5: 401414.Google Scholar
Morris, R.F., and Miller, C.A.. 1954. The development of life tables for the spruce budworm. Canadian Journal of Zoology 32: 283301.CrossRefGoogle Scholar
Munster-Swendsen, M. 1980. The distribution in time and space of parasitism in Epinotia tedella (Cl.) (Lepidoptera: Tortricidae). Ecological Entomology 5: 373383.CrossRefGoogle Scholar
Parry, D. 1995. Larval and pupal parasitism of the forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae), in Alberta. The Canadian Entomologist 127: 877893.CrossRefGoogle Scholar
Prentice, R.M. 1954. Decline of populations of the forest tent caterpillar in central Saskatchewan. Canadian Forest Service Bi-Monthly Progress Reports 10(5): 2.Google Scholar
Raske, A.G. 1975. Cold-hardiness of first instar larvae of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist 107: 7580.CrossRefGoogle Scholar
Roland, J. 1993. Large-scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia 93: 2530.CrossRefGoogle ScholarPubMed
Roland, J., and Kaupp, W.J.. 1995. Reduced transmission of forest tent caterpillar NPV at the forest edge. Environmental Entomology 24: 11751178.CrossRefGoogle Scholar
Roland, J., and Taylor, P.D.. 1995. Herbivore – natural enemy interactions in fragmented and continuous forests. pp. 195208in Cappuccino, N., and Price, P.W. (Eds.), Population dynamics: new approaches and synthesis. Academic Press, San Diego, CA.CrossRefGoogle Scholar
Roland, J., and Taylor, P.D.. 1997. Insect parasitoid species respond to forest structure at different spatial scales. Nature (London) 386: 710713.CrossRefGoogle Scholar
Roland, J., Taylor, P.D., and Cooke, B.. 1997. Forest structure and the spatial pattern of parasitoid attack. pp. 97106in Watt, A.D, Stork, N.E., and Hunter, M.D. (Eds.), Forests and insects. Chapman and Hall, New York.Google Scholar
Royama, T. 1981. Fundamental concepts and methodology for the analysis of animal population dynamics, with particular reference to univoltine species. Ecological Monographs 51: 473493.CrossRefGoogle Scholar
Royama, T. 1996. Analytical population dynamics. 2nd ed. Chapman & Hall, New York.Google Scholar
Salt, R.W. 1936. Studies on the freezing process in insects. University of Minnesota Agricultural Experiment Station Technical Bulletin 16.Google Scholar
Sippell, W.L. 1962. Outbreaks of the forest tent caterpillar Malacosoma disstria Hbn., a periodic defoliator of broad leafed trees in Ontario. The Canadian Entomologist 94: 408416.CrossRefGoogle Scholar
Stairs, G.R. 1966. Transmission of virus in tent caterpillar populations. The Canadian Entomologist 98: 11001104.CrossRefGoogle Scholar
Weseloh, R.M. 1972. Spatial distribution of gypsy moth (Lepidoptera: Lymantriidae) and some of its parasitoids within a forest environment. Entomophaga 17: 339351.CrossRefGoogle Scholar
Weseloh, R.M. 1976. Behavior of forest insect parasitoids. pp. 99110in Anderson, J.F., and Kaya, H.K. (Eds.), Perspectives in forest entomology. Academic Press, New York.Google Scholar
Wetzel, B.W., Kulman, H.M., and Witter, J.A. 1973. Effects of cold temperatures on hatching of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist 105: 11451149.CrossRefGoogle Scholar
Wilkinson, L., Hill, M., Miceli, S., Birkenbeuel, G., and Vang, E.. 1992. SYSTAT for Windows: version 5. Systat Inc., Evanston, IL.Google Scholar
Witter, J.A., and Kulman, H.M.. 1972. A review of the parasites and predators of tent caterpillars (Malacosoma spp.) in North America. University of Minnesota Agricultural Experiment Station Technical Bulletin 289.Google Scholar
Witter, J.A., and Kulman, H.M.. 1979. The parasite complex of the forest tent caterpillar in northern Minnesota. Environmental Entomology 8: 723731.CrossRefGoogle Scholar
Witter, J.A., Mattson, W.J., and Kulman, H.M.. 1975. Numerical analysis of a forest tent caterpillar (Lepidoptera: Lasiocampidae) outbreak in northern Minnesota. The Canadian Entomologist 107: 837854.CrossRefGoogle Scholar