Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T03:37:03.679Z Has data issue: false hasContentIssue false

Effects of azadirachtin-based insecticides on the egg parasitoid Trichogramma minutum (Hymenoptera: Trichogrammatidae)

Published online by Cambridge University Press:  02 April 2012

D.B. Lyons*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
B.V. Helson
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
R.S. Bourchier
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta, Canada T1J 4B1
G.C. Jones
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
J.W. McFarlane
Affiliation:
Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, Canada P6A 2E5
*
1 Corresponding author (e-mail: blyons@nrcan.gc.ca).

Abstract

Effects of neem formulations on the reproduction and survival of the egg parasitoid Trichogramma minutum Riley were examined to assess the compatibility of the two control strategies in integrated pest management programs. A laboratory bioassay was developed for this purpose, which could be used as a model ecotoxicological system. Eggs of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), which had been treated with an acetone solution containing an azadirachtin-based formulation, were presented to individual T. minutum females. These eggs were held until parasitoids completed development and emerged from the eggs. Survival of T. minutum females 1 day after treatment, number of Mediterranean flour moth eggs parasitized, proportion of parasitized eggs from which adults emerged, and sex ratios of emerging adult parasitoids were determined. Two formulations of neem-seed extracts containing azadirachtin and a purified azadirachtin standard were tested at an operational dose and at 10 times the operational dose. At 50 g azadirachtin/ha (operational dose), no significant effects were observed on survival of parasitoid females. At 500 g azadirachtin/ha, female survival after 1 day was significantly reduced by Azatin EC and Neem EC. No reduction was evident with the 100% azadirachtin treatment, suggesting that other components of the formulations were in part responsible for the toxicity to females. Likewise, at 500 g azadirachtin/ha, the number of eggs parasitized was greatly reduced by Azatin EC and slightly reduced by Neem EC but was not reduced by an azadirachtin standard. These reductions in egg parasitism were probably due to the observed effects on female survival. At 500 g azadirachtin/ha, parasitoid developmental success was reduced by all treatments including the azadirachtin standard. Neem EC and Azatin EC at the lower dose also had a small but significant effect on developmental success. Sex ratio of emerging adults was not affected. These results indicate that azadirachtin is compatible with T. minutum during egg parasitism at operational dosages.

Résumé

L'examen des effets de préparations de neem sur la reproduction et la survie du parasite des oeufs, Trichogramma minutum Riley, a permis d'évaluer la compatibilité de deux stratégies dans des programmes de lutte intégrée. Nous avons mis au point dans ce but un test biologique en laboratoire qui peut être utilisé comme modèle de système écotoxicologique. Des oeufs de la pyrale méditerranéenne de la farine, Ephestia kuehniella Zeller (Lepidoptera : Pyralidae), traités à une solution d'acétone contenant une préparation à base d'azadirachtine, sont offerts à des femelles isolées de T. minutum. Les oeufs sont gardés jusqu'à ce que le parasitoïde complète son développement et émerge des oeufs. Nous avons déterminé la survie des femelles de T. minutum un jour après le traitement, le nombre d'oeufs parasités de la pyrale méditerranéenne de la farine, le pourcentage d'oeufs parasités d'où ont émergé des adultes et le rapport mâles:femelles des parasitoïdes adultes à l'émergence. Nous avons testé deux préparations d'extraits de graines de neem contenant de l'azadirachtine, ainsi qu'une solution standard d'azadirachtine purifiée à la dose opérationnelle et à dix fois la dose opérationnelle. À 50 g d'azadirachtine/ha (dose opérationnelle), il n'y a pas d'effet significatif sur la survie des parasitoïdes femelles. À 500 g d'azadirachtine/ha, la survie des femelles après une journée est significativement réduite par l'Azatin EC et le Neem EC. Il n'y a pas de réduction décelable lors du traitement à l'azadirachtine 100 %, ce qui fait croire que ce sont d'autres composantes des préparations qui sont en partie responsables de la toxicité pour les femelles. De même, à 500 g d'azadirachtine/ha, le nombre d'oeufs parasités est fortement réduit par l'Azatin EC et légèrement réduit par le Neem EC, mais il n'y a pas de réduction par la solution standard d'azadirachtine. Ces réductions du parasitisme des oeufs sont probablement dus aux effets observés sur la survie des femelles. À 500 g d'azadirachtine/ha, le succès du développement du parasitoïde diminue avec tous les traitements, y compris celui à la solution standard d'azadirachtine. Le Neem EC et l'Azatin EC à la dose la plus faible ont aussi un effet faible, mais significatif, sur le succès du développement. Le rapport mâles:femelles des adultes à l'émergence n'est pas affecté. Ces résultats indiquent que le traitement à l'azadirachtine à des doses opérationnelles est compatible avec T. minutum durant le parasitisme des oeufs.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourchier, R.S., Lyons, D.B., Kenis, M. 2000. The potential for biological control of the pine false webworm using entomophagous parasitoids. pp 23–9 in Lyons, D.B., Jones, G.C., Scarr, T.A. (Eds), Proceedings of a Workshop on the Pine False Webworm, Acantholyda erythrocephala (Hymenoptera: Pamphiliidae), Toronto, Ontario, 16 February 1998. Sault Ste. Marie, Ontario: Natural Resources Canada, Canadian Forest ServiceGoogle Scholar
Corrigan, J.E., Laing, J.E. 1991. An improved method for producing small consistent samples of hosts for presentation to the egg parasitoid, Trichogramma minutum. Proceedings of the Entomological Society of Ontario 122: 103–4Google Scholar
Deepak, K.D., Choudhary, A.K. 1998. Toxicity of some insecticides to Tetrastichus pyrillae Crowford (sic!) (Hymenoptera: Eulophidae) an egg parasite of sugarcane leaf hopper, Pyrilla perpusilla (Walker). Annals of Plant Protection Sciences 6: 214–6Google Scholar
Dureja, P., Sinha, A., Tanwar, R.S., Tomar, S.S. 1999. Stability of azadirachtin-A in different organic solvents and aqueous solution. Pesticide Research Journal 11: 90–2Google Scholar
Feldhege, M., Schmutterer, H. 1993. Investigations on side-effects of Margosan-O on Encarsia formosa Gah. (Hym., Aphelinidae), parasitoid of the greenhouse whitefly, Trialeurodes vaporariorum Westw. (Hom., Aleyrodidae). Journal of Applied Entomology 115: 3742CrossRefGoogle Scholar
Goudegnon, A.E., Kirk, A.A., Schiffers, B., Bordat, D. 2000. Comparative effects of deltamethrin and neem kernel solution treatments on diamondback moth and Cotesia plutellae (Hym., Braconidae) parasitoid populations in the Cotonou peri-urban area in Benin. Journal of Applied Entomology 124: 141–4CrossRefGoogle Scholar
Helson, B. 1992. Naturally derived insecticides: prospects for forestry use. Forestry Chronicle 68: 349–54CrossRefGoogle Scholar
Helson, B.V., Lyons, D.B., Wanner, K.W., Scarr, T.A. 2001. Control of conifer defoliators with neem-based systemic bioinsecticides using a novel injection device. The Canadian Entomologist 133: 729–44CrossRefGoogle Scholar
Jandel Corporation 1995. SigmaStat statistical software user's manual. Version 2.0. San Rafael, California: Jandel CorporationGoogle Scholar
Klemm, U., Schmutterer, H. 1993. Effects of neem preparations on Plutella xylostella L., and its natural enemies of the genus Trichogramma. Zeitschrift fuer Pflanzenkrankheiten und Pflanzenschutz 100: 113–28Google Scholar
Laing, J.E., Eden, G.M. 1990. Mass-production of Trichogramma minutum Riley on factitious host eggs. pp 1024in Smith, S.M., Carrow, J.R., Laing, J.E. (Eds), Inundative Release of the Egg Parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), Against Forest Pests Such as the Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): The Ontario Project 1982–1986. Memoirs of the Entomological Society of Canada 153Google Scholar
Lakshmi, V.J., Katti, G., Krishnaiah, N.V., Lingaiah, T. 1997. Laboratory evaluation of commercial neem formulations vis-à-vis insecticides against egg parasitoid, Trichogramma japonicum Ashmead (Hymenoptera: Trichogrammatidae). Journal of Biological Control 11: 2932Google Scholar
Leatemia, J.A., Laing, J.E., Corrigan, J.E. 1995. Effects of adult nutrition on longevity, fecundity, and offspring sex ratio of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). The Canadian Entomologist 127: 245–54CrossRefGoogle Scholar
Lowery, D.T., Isman, M.B. 1995. Toxicity of neem to natural enemies of aphids. Phytoparasitica 23: 297306CrossRefGoogle Scholar
Lyons, D.B. 1994. Development of the arboreal stages of the pine false webworm (Hymenoptera: Pamphiliidae). Environmental Entomology 23: 846–54CrossRefGoogle Scholar
Lyons, D.B., Helson, B.V., Jones, G.C., McFarlane, J.W., Scarr, T. 1996. Systemic activity of neem seed extracts containing azadirachtin in pine foliage for control of the pine false webworm, Acantholyda erythrocephala (Hymenoptera: Pamphiliidae). Proceedings of the Entomological Society of Ontario 127: 4555Google Scholar
Lyons, D.B., Helson, B.V., Jones, G.C., McFarlane, J.W. 1998. Effectiveness of neem- and diflubenzuron-based insecticides for control of the pine false webworm, Acantholyda erythrocephala (L.) (Hymenoptera: Pamphiliidae). Proceedings of the Entomological Society of Ontario 129: 115–26Google Scholar
McCloskey, C., Arnason, J.T., Donskov, N., Chenier, R., Kaminski, J., Philogene, B.L.R. 1993. Third trophic level effects of azadirachtin. The Canadian Entomologist 125: 163–9CrossRefGoogle Scholar
Osman, M.Z., Bradley, J. 1993. Effects of neem seed extracts on Pholeastor (Apanteles) glomeratus L. (Hym., Braconidae), a parasitoid of Pieris brassicae L. (Lep., Pieridae). Journal of Applied Entomology 115: 259–65CrossRefGoogle Scholar
Raguraman, S., Singh, R.P. 1998. Behavioral and physiological effects of neem (Azadirachta indica) seed kernel extracts on larval parasitoid, Bracon hebetor. Journal of Chemical Ecology 24: 1241–50CrossRefGoogle Scholar
Raguraman, S., Singh, R.P. 1999. Biological effects of neem (Azadirachta indica) seed oil on an egg parasitoid, Trichogramma chilonis. Journal of Economic Entomology 92: 1274–80CrossRefGoogle Scholar
Schmutterer, H. 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology 35: 271–97CrossRefGoogle ScholarPubMed
Schmutterer, H. 1997. Side-effects of neem (Azadirachta indica) products on insect pathogens and natural enemies of spiders and mites. Journal of Applied Entomology 121: 121–8CrossRefGoogle Scholar
Shapiro, M., Robertson, J.L., Webb, R.E. 1994. Effect of neem seed extract upon the gypsy moth (Lepidoptera: Lymantriidae) and its nuclear polyhedrosis virus. Journal of Economic Entomology 87: 356–60CrossRefGoogle Scholar
Smith, S.M. 1996. Biological control with Trichogramma: advances, successes, and potential of their use. Annual Review of Entomology 41: 375406CrossRefGoogle ScholarPubMed
Smith, S.M., Carrow, J.R., JE, Laing (Editors). 1990. Inundative release of the egg parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), against forest pests such as the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): The Ontario Project 1982–1986. Memoirs of the Entomological Society of Canada 153Google Scholar
Sokal, R.R., Rohlf, F.J. 1981. Biometry. 2nd edition. San Francisco: WH Freeman and CoGoogle Scholar
Stark, J.D., Wong, T.T.Y., Vargas, R.I., Thalman, R.K. 1992. Survival, longevity, and reproduction of tephritid fruit fly parasitoids (Hymenoptera Braconidae) reared from fruit flies exposed to azadirachtin. Journal of Economic Entomology 84: 1125–9CrossRefGoogle Scholar
Sundaram, K.M.S., Curry, J. 1994. Initial deposits and persistence of azadirachtin in fir and oak foliage after spray application of ‘Margosan-O' formulation. Pesticide Science 41: 129–38CrossRefGoogle Scholar
Srivastava, M., Paul, A.V.N., Rengasamy, S., Kumar, J., Parmar, B.S. 1997. Effect of neem (Azadirachta indica A. Juss) seed kernel extracts on the larval parasitoid Bracon brevicornis Wesm. (Hym., Braconidae). Journal of Applied Entomology 121: 51–7CrossRefGoogle Scholar
Thakur, J.N., Pawar, A.D. 2000. Comparative toxicity of different insecticides against Trichogramma chilonis Ishii. Journal of Biological Control 14: 51–3Google Scholar
Villanueva-Jiménez, J.A., Hoy, M.A., Davies, F.S. 2000. Field evaluation of integrated pest management-compatible pesticides for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) and its parasitoid Ageniaspis citricola (Hymenoptera: Encyrtidae). Journal of Economic Entomology 93: 357–67CrossRefGoogle ScholarPubMed
Wang, Z., Smith, S.M. 1996. Phenotypic differences between thelytokous and arrhenotokous Trichogramma minutum from Zeiraphera canadensis. Entomologia Experimentalis et Applicata 78: 315–23CrossRefGoogle Scholar
Wanner, K.W., Kostyk, B.C. 1995. Evaluation of neem seed extract against spruce budworm, Choristoneura fumiferana (Clem.), in white spruce, Picea glauca (Moench) Voss., seed orchards. Proceedings of the Entomological Society of Ontario 126: 91–3Google Scholar