Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T07:25:04.562Z Has data issue: false hasContentIssue false

Culex pipiens (Culicidae) is attracted to humans in southern Ontario, but will it serve as a bridge vector of West Nile virus?

Published online by Cambridge University Press:  04 July 2012

Abstract

We tested whether the known bird-biting mosquito, Culex pipiens Linnaeus (Diptera: Culicidae), is attracted to human hosts by placing humans at ground level (∼1.5 m) or in the forest canopy (∼5 m) in a Niagara woodlot. Modified Centers for Disease Control (CDC) miniature light traps (no light, no CO2) were placed next to the human hosts to capture the attracted mosquitoes. The human-baited traps were compared with control traps (standard CDC miniature light traps with CO2, but no light). As expected from previous research, there were more C. pipiens captured at the higher elevation than at ground level. Generally, they were attracted to control traps more than to human-baited traps at 5 m, whereas at 1.5 m there was no difference between the two trap types. As a comparison, most Aedes vexans (Meigen) mosquitoes were captured at the 1.5 m elevation but there were significantly more captured in the control traps than the human-baited traps during all periods. Because C. pipiens is attracted to humans throughout the entire season at the 1.5 m height (where they might encounter humans), it is likely that C. pipiens can serve as a bridge vector of West Nile virus (WNV).

Résumé

Nous avons vérifié si le moustique piqueur d'oiseaux bien connu, Culex pipiens Linnaeus (Diptera: Culicidae), est attiré par les hôtes humains au niveau du sol (∼1,5 m) et au niveau de la canopée (∼5 m) dans une terre boisée de Niagara. Nous avons placé des pièges lumineux miniatures de type CDC (Centres de contrôle des maladies), sans lumière, ni CO2, près des hôtes humains pour capturer les moustiques attirés. Les pièges avec appâts humains ont été comparés à des pièges témoins (des pièges miniatures CDC standard avec CO2, mais sans lumière). Tel que le laissaient prévoir les recherches antérieures, il y a plus de C. pipiens au point plus élevé qu'au niveau du sol. Généralement, ils sont plus attirés par les pièges témoins que par les pièges avec appât humain à 5 m, alors qu’à 1,5 m il n'y a pas de différence entre les deux types de pièges. Par comparaison, la plupart des moustiques Aedes vexans (Meigen) ont été capturés à la hauteur de 1,5 m, mais il y avait significativement plus de captures dans les pièges témoins que dans les pièges avec appât humain durant toutes les périodes. Parce que C. pipiens est attiré par les humains durant toute la saison à la hauteur de 1,5 m (là où il risque de rencontrer des humains), il est vraisemblable que C. pipiens puisse servir de vecteur-pont pour le virus du Nil occidental (WNV).

Type
Original Article
Copyright
Copyright © Entomological Society of Canada 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.F., Andreadis, T.G., Main, A.J., Ferrandino, F.J., Vossbrinck, C.R. 2006. West Nile virus females and male mosquitoes (Diptera: Culicidae) in subterranean, ground, and canopy habitats in Connecticut. Journal of Medical Entomology, 43: 10101019.CrossRefGoogle ScholarPubMed
Andreadis, T.G., Anderson, J.F., Vossbrinck, C.R., Main, A.J. 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector-Borne and Zoonotic Diseases, 4: 360378.Google Scholar
Apperson, C.S., Hassan, H.K., Harrison, B.A., Savage, H.M., Aspen, S.E., Farajollahi, A., et al. 2004. Host feeding patterns of established potential mosquito vectors of West Nile virus in the eastern United States. Vector-Borne and Zoonotic Diseases, 4: 7182.CrossRefGoogle ScholarPubMed
Clements, A.N. 1999. The biology of mosquitoes. Vol. 2. Sensory reception and behaviour. CABI, New York.Google Scholar
Cywinska, A., Hunter, F.F., Hebert, P.D.N. 2006. Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology, 20: 413424.CrossRefGoogle ScholarPubMed
Gingrich, J.B. Williams, G.M. 2005. Host-feeding patterns of suspected West Nile virus mosquito vectors in Delaware, 2001–2002. Journal of the American Mosquito Control Association, 21: 194200.Google Scholar
Hamer, G.L., Kitron, U.D., Goldberg, T.L., Brawn, J.D., Loss, S.R., Ruiz, M.O., et al. 2009. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. American Journal of Tropical Medicine and Hygiene, 80: 268278.Google Scholar
Kilpatrick, A.M., Kramer, L.D., Campbell, S., Alleyne, E.O., Dobson, A.P., Daszak, P. 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerging Infectious Diseases, 11: 425429.CrossRefGoogle Scholar
Kilpatrick, A.M., Kramer, L.D., Jones, M.J., Marra, P.P., Daszak, P. 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behaviour. PLoS Biology, 4: 606610 ; doi:10.1371/journal.pbio.0040082.CrossRefGoogle Scholar
Kulasekera, V.L., Kramer, L., Nasci, R.S., Mostashari, F., Cherry, B., Trock, S.C., et al. 2001. West Nile infection in mosquitoes, birds, horses, and humans, Staten Island, New York, 2000. Emerging Infectious Diseases, 7: 722725.CrossRefGoogle ScholarPubMed
Madder, D.J., Surgeoner, G.A., Helson, B.V. 1983. Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in southern Ontario. Journal of Medical Entomology, 20: 275287.CrossRefGoogle Scholar
Main, A.J., Tonn, R.J., Randall, E.J., Anderson, K.S. 1966. Mosquito densities at heights of five and twenty-five feet in southeastern Massachusetts. Mosquito News, 26: 243248.Google Scholar
Mitchell, L. 1982. Time-segregated mosquito collections with a CDC miniature light trap. Mosquito News, 42: 1218.Google Scholar
Mitchell, L. Rockett, L. 1979. Vertical stratification preferences of adult female mosquitoes in a sylvan habitat (Diptera: Culicidae). The Great Lakes Entomologist, 12: 219223.Google Scholar
Molaei, G. Andreadis, T.G. 2006. Identification of avian- and mammalian-derived blood meals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, U.S.A. Journal of Medical Entomology, 43: 10881093.Google Scholar
Novak, R.J., Peloquin, J., Rohrer, W. 1981. Vertical distribution of adult mosquitoes (Diptera: Culicidae) in a northern deciduous forest in Indiana. Journal of Medical Entomology, 18: 116122.Google Scholar
Russell, C.B. Hunter, F.F. 2005. Attraction of Culex pipiens/restuans (Diptera: Culicidae) mosquitoes to bird uropygial odors at two elevations in the Niagara Region of Ontario. Journal of Medical Entomology, 42: 301305.CrossRefGoogle ScholarPubMed
Turell, M.J., Dohm, D.J., Sardelis, M.R., O'Guinn, M.L., Andreadis, T.G., Blow, J.A. 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. Journal of Medical Entomology, 42: 5762.CrossRefGoogle ScholarPubMed
Wood, D.M., Dang, P.T., Ellis, R.A. 1979. The mosquitoes of Canada (Diptera: Culicidae). The Insects and Arachnids of Canada, 6: 1390.Google Scholar