Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T13:08:25.770Z Has data issue: false hasContentIssue false

Colonization of cut branches of five coniferous hosts of the pitch canker fungus by Pityophthorus spp. (Coleoptera: Scolytidae) in central, coastal California

Published online by Cambridge University Press:  02 April 2012

Nadir Erbilgin*
Affiliation:
140 Mulford Hall, Division of Insect Biology, University of California, Berkeley, California 94720, United States of America
Andrew J. Storer
Affiliation:
School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, United States of America
David L. Wood
Affiliation:
137 Mulford Hall, Division of Insect Biology, University of California, Berkeley, California 94720, United States of America
Thomas R. Gordon
Affiliation:
Department of Plant Pathology, University of California, Davis, California 95616, United States of America
*
1Corresponding author (e-mail: erbilgin@nature.berkeley.edu).

Abstract

Pitch canker of pines (Pinus spp.) and Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco) (Pinaceae) is caused by the fungus Fusarium circinatum Nirenberg et O'Donnell. In California, infections by F. circinatum occur largely through wounds caused by insects. Field experiments were initiated to determine whether the colonization activities of twig beetles, Pityophthorus spp. (Coleoptera: Scolytidae), could explain the incidence of pitch canker on Monterey pine (P. radiata D. Don), Bishop pine (P. muricata D. Don), ponderosa pine (P. ponderosa var. ponderosa Dougl.), knobcone pine (P. attenuata Lemm.), and Douglas-fir. Asymptomatic branches were cut from each of four pairs of tree species (Monterey–Bishop, Monterey–ponderosa, Monterey–knobcone, Monterey–Douglas-fir) at four sites and attached to the lower canopy of both heterospecific and conspecific host trees (total of four combinations per pair). After 10 weeks, branches were collected and placed in rearing tubes in the laboratory. Emerging insects were identified and placed on a Fusarium-selective medium. Monterey, Bishop, and ponderosa pines were more heavily infested by Pityophthorus spp. than Douglas-fir and knobcone pine. Furthermore, more Pityophthorus beetles emerged from Monterey pine branches placed in Monterey pine canopies than from Monterey pine branches placed in Bishop or ponderosa pine canopies, indicating that reduced emergence (colonization) was caused by the hetero specific host. Relatively fewer insects emerged from sites containing either Monterey and knobcone pines or Monterey pine and Douglas-fir. Fusarium circinatum was not isolated from emerging Pityophthorus spp. Susceptibility of the five host species, based on mean lesion lengths resulting from mechanical inoculations, varied significantly. The longest lesions were on Monterey pine and the shortest were on ponderosa pine and Douglas-fir. The low incidence of pitch canker on Douglas-fir and ponderosa pine in nature compared with that on Monterey, Bishop, and knobcone pines may be explained by the low colonization by twig beetles and the greater resistance of Douglas-fir and ponderosa pine to this disease, compared with the other three hosts.

Résumé

Le chancre résineux des pins (Pinus spp.) et du sapin de Douglas (Pseudotsuga menziesii (Mirbel) Franco) (Pinaceae) est causé par le champignon Fusarium circinatum Nirenberg et O'Donnell. En Californie, les infections de F. circinatum pénètrent surtout par des plaies faites par les insectes. Nous avons mis au point des expériences de terrain afin de déterminer si les activités de colonisation des scolytes Pityophthorus spp. (Coleoptera: Scolytidae) peuvent expliquer l'incidence du chancre résineux chez le pin de Monterey (P. radiata D. Don), le pin muriqué (P. muricata D. Don), le pin ponderosa (P. ponderosa var. ponderosa Dougl.), le pin à cônes pointus (P. attenuata Lemm.) et le sapin de Douglas. Nous avons coupé des branches asymptotiques de chacune de quatre paires d'espèces d'arbres (Monterey–muriqué, Monterey–ponderosa, Monterey–cônes pointus, Monterey–Douglas) à quatre sites et les avons attachées à la ramure inférieure d'arbres hôtes de même espèce et d'espèces différentes (un total de quatre combinaisons par paire). Les branches ont été récoltées au bout de 10 semaines et placées dans des tubes d'élevage en laboratoire. Les insectes qui ont émergé ont été identifiés et placés sur un milieu de culture spécifique à Fusarium. Les pins Monterey, muriqué, et ponderosa étaient plus fortement infestés par Pityophthorus spp. que le sapin de Douglas et le pin à cônes pointus. De plus, un plus grand nombre de Pityophthorus ont émergé de branches de pins de Monterey placées dans des ramures de pins de Monterey que de branches de pins de Monterey placées dans des ramures de pins muriqués ou ponderosa, ce qui laisse croire que l'émergence (colonisation) réduite est due à l'hôte d'espèce différente. Relativement moins d'insectes ont émergé des sites contenant ou bien les pins de Monterey et à cônes pointus ou alors le pin de Monterey et le sapin de Douglas. Nous n'avons pas isolé de Fusarium circinatum chez les Pityophthorus spp. en émergence. La susceptibilité des cinq espèces d'hôtes, déterminée par la longueur moyenne des lésions causées par les inoculations mécaniques, varie de façon significative. Les lésions les plus longues se retrouvent sur les pins de Monterey et les plus courtes sur les pins ponderosa et les sapins de Douglas. La faible incidence du chancre résineux sur le sapin de Douglas et le pin ponderosa en nature par rapport à celle sur les pins de Monterey, muriqués et à cônes pointus peut s'expliquer par la faible colonisation des scolytes sur le sapin Douglas et le pin ponderosa et par la plus grande résistance de ces arbres à la maladie par comparaison aux trois autres hôtes.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balocchi, C.E. 1997. Radiata pine as an exotic species. In Proceedings of the 24th Southern Forest Tree Improvement Conference, Orlando, Florida, 9–12 June 1997. Edited by White, T., Dudley, H., and Powell, G.. University of Florida Press, Gainesville, Florida. pp. 1117.Google Scholar
Bonello, P., McNee, W.R., Storer, A.J., Wood, D.L., and Gordon, T.R. 2001. The role of olfactory stimuli in the location of weakened hosts by twig-infesting Pityophthorus spp. Ecological Entomology, 26: 815.CrossRefGoogle Scholar
Brasier, C.M. 1986. The population biology of Dutch elm disease: its principal features and some implications for other host–pathology systems. Advances in Pathology, 5: 53118.Google Scholar
Bright, D.E. 1981. Taxonomic monograph of the genus Pityophthorus Eichhoff in North and Central America (Coleoptera: Scolytidae). Memoirs of the Entomological Society of Canada No. 118.Google Scholar
Correll, J.C., Gordon, T.R., McCain, A.H., Fox, J.W., Koehler, C.S., Wood, D.L., and Schultz, M.E. 1991. Pitch canker in California: pathogenicity, distribution, and canker development on Monterey pine (Pinus radiata). Plant Disease, 75: 676682.CrossRefGoogle Scholar
Correll, J.C., Gordon, T.R., and McCain, A.H. 1992. Genetic diversity in California and Florida populations of the pitch canker fungus Fusarium subglutinans f. sp. pini. Phytopathology, 82: 415420.CrossRefGoogle Scholar
Dallara, P.L. 1997. Studies on the distribution, interspecific relationships, host range and chemical ecology of Pityophthorus spp. (Coleoptera: Scolytidae) and selected insectan associates and their associations with Fusarium subglutinans f.sp. pini in central coastal California. Ph.D. thesis, University of California, Berkeley, California.Google Scholar
Dallara, P.L., Storer, A.J., Gordon, T.R., and Wood, D.L. 1995. Current status of pitch canker disease in California. California Department of Forestry and Fire Protection Tree Note No. 20.Google Scholar
Dick, M. 1998. Pine pitch canker — the threat to New Zealand. New Zealand Forestry, 42: 3034.Google Scholar
Dwinell, L.D. 1999. Global distribution of the pitch canker fungus. In Proceedings of Current and Potential Impacts of Pitch Canker in Radiata Pine, Monterey, California, 30 November – 3 December 1998. Edited by Devey, M.E., Matheson, A.C., and Gordon, T.R.. CSIRO, Australia. pp. 5457.Google Scholar
Dwinell, L.D., and Tidwell, T.E. 1987. Pine pitch canker in California. Annual Report of the Pine Pitch Canker Interagency Working Group, State of California.Google Scholar
Dwinell, L.D., Barrows-Broaddus, J.B., and Kuhlman, E.G. 1985. Pitch canker: a disease complex of southern pines. Plant Disease, 69: 270276.CrossRefGoogle Scholar
Fox, J.W., and Schultz, M.E. 1991. Insects associated with pitch canker in California. In Proceedings of the 39th Annual Meeting of the California Forest Pest Council, Sacramento, California, 9–10 September 1991. Edited by Adams, D.H.. California Department of Forestry and Fire Protection, Sacramento, California. p. 23.Google Scholar
Fox, J.W., Schultz, M.E., Gordon, T.R., and Wood, D.L. 1990 a. New associations of pitch canker caused by Fusarium subglutinans with bark, twig, and cone beetles. Phytopathology, 80 (10): 989. [Abstr.]Google Scholar
Fox, J.W., Wood, D.L., and Koehler, C.S. 1990 b. Distribution and abundance of engraver beetles (Scolytidae: Ips species) on Monterey pines infected with pitch canker. The Canadian Entomologist, 122: 11571166.CrossRefGoogle Scholar
Fox, J.W., Wood, D.L., Koehler, C.S., and O' Keefe, S.T. 1991. Engraver beetles (Scolytidae: Ips species) as vectors of the pitch canker fungus, Fusarium subglutinans. The Canadian Entomologist, 123: 13551367.CrossRefGoogle Scholar
Gordon, T.R., Storer, A.J., and Okamoto, D. 1996. Population structure of the pitch canker pathogen, Fusarium subglutinans f. sp. pini, in California. Mycological Research, 100: 850854.CrossRefGoogle Scholar
Gordon, T.R., Wikler, K.R., Storer, A.J., and Wood, D.L. 1997. Pitch canker and its potential impacts on Monterey pine forests in California. Fremontia, 25: 59.Google Scholar
Gordon, T.R., Wikler, K.R., Clark, S.L., Okamoto, D., Storer, A.J., and Bonello, P. 1998 a. Resistance to pitch canker disease, caused by Fusarium subglutinans f.sp. pini, in Monterey pine (Pinus radiata). Plant Pathology, 47: 706711.Google Scholar
Gordon, T.R., Okamoto, D., Storer, A.J., and Wood, D.L. 1998 b. Susceptibility of five landscape pines to pitch canker disease, caused by Fusarium subglutinans f.sp. pini. HortScience, 33: 868871.CrossRefGoogle Scholar
Gordon, T.R., Storer, A.J., and Wood, D.L. 2001. The pitch canker epidemic in California. Plant Disease, 85: 11281139.CrossRefGoogle ScholarPubMed
Griswold, C.L., and Neiswander, R.B. 1953. Insect vectors of oak wilt fungus. Journal of Economic Entomology. 46: 708718.CrossRefGoogle Scholar
Guerra-Santos, J.J. 1999. Pitch canker in Monterey pine in Mexico. In Proceedings of Current and Potential Impacts of Pitch Canker in Radiata Pine, Monterey, California, 30 November – 3 December 1998. Edited by Devey, M.E., Matheson, A.C., and Gordon, T.R.. CSIRO, Australia. pp. 5861.Google Scholar
Harrington, T.C. 1993. Biology and taxonomy of fungi associated with bark beetles. In Beetle–pathogen interactions in conifer forests. Edited by Schowalter, T.D. and Filip, G.M.. Academic Press, London. pp. 3760.Google Scholar
Harrington, T.C., Cobb, F.W., and Lownsbery, J.W. 1985. Activity of Hylastes nigrinus, a vector of Verticicladiella wageneri, in thinned stands of Douglas-fir. Canadian Journal of Forest Research, 15: 519523.CrossRefGoogle Scholar
Hepting, G.H., and Roth, E.R. 1946. Pitch canker, a new disease of southern pines. Journal of Forestry, 44: 742744.Google Scholar
Hickman, J.C. 1993. The Jepson manual: higher plants of California. University of California Press, Berkeley, California.Google Scholar
Hodge, G.R., and Dvorak, W.S. 2000. Differential responses of Central American and Mexican pine species and Pinus radiata to infection by the pitch canker fungus. New Forests, 19: 241258.CrossRefGoogle Scholar
Hoover, K., Wood, D.L., Fox, J.W., and Bros, W.E. 1995. Quantitative and seasonal association of the pitch canker fungus, Fusarium subglutinans f.sp. pini, with Conophthorus radiatae (Coleoptera: Scolytidae) and Ernobius punctulatus (Coleoptera: Anobiidae) which infest Pinus radiata. The Canadian Entomologist, 127: 7991.CrossRefGoogle Scholar
Hoover, K., Wood, D.L., Storer, A.J., Fox, J.W., and Bros, W.E. 1996. Transmission of the pitch canker fungus, Fusarium subglutinans f. sp. pini, to Monterey pine, Pinus radiata, by cone- and twig-infesting beetles. The Canadian Entomologist, 128: 981994.CrossRefGoogle Scholar
Juzwik, J., and French, D.W. 1983. Ceratocystis fagacearum and C. piceae on the surfaces of free-flying and fungus-mat-inhabiting nitidulids. Phytopathology, 73: 11641168.CrossRefGoogle Scholar
Leach, J.G. 1940. Insect transmission of plant diseases. McGraw-Hill Book Co., Inc., New York.Google Scholar
Liebhold, A.M., Macdonald, W.L., Bergdahl, D., and Maestro, V.C. 1995. Invasion by exotic forest pests — athreat to forest ecosystems. Forest Science, 41 (Suppl. S): 149.CrossRefGoogle Scholar
Manion, P.D. 1981. Tree disease concepts. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Manion, P.D., and Lachance, D. 1992. Forest decline concepts. APS Press, St. Paul, Minnesota.Google Scholar
McCain, A.H., Koehler, C.S., and Tjosvold, S.A.1987. Pitch canker threatens California pines. California Agriculture, 41: 2223.Google Scholar
McDonald, P.M., and Laacke, R.J. 1990. Pinus radiata D.Don, Monterey pine. In Silvics of North America. Vol. 1. Conifers. Edited by Burns, R.M. and Honkala, B.H.. Agriculture Handbook No. 654. United States Department of Agriculture Forest Service, Washington, District of Columbia. pp. 433441.Google Scholar
McNee, W.R., Wood, D.L., Storer, A.J., and Gordon, T.R. 2002. Insect and pathogen survival in intact and chipped Monterey pine (Pinus radiata) branches infected with the pitch canker pathogen, Fusarium circinatum. The Canadian Entomologist, 134: 4758.CrossRefGoogle Scholar
Muramoto, H., and Dwinell, L.D. 1990. Pitch canker of Pinus luchuensis in Japan. Plant Disease, 74: 530.CrossRefGoogle Scholar
Nelson, P.E., Toussoun, T.A., and Marasas, F.O. 1983. Fusarium spp.: an illustrated manual for identification. Penn State University Press, University Park, Pennsylvania.Google Scholar
Neter, J., Wasserman, W., and Kutner, M.H. 1983. Applied linear regression models. 2nd ed. Irwin, Homewood, Illinois.Google Scholar
Nevill, R.J., and Alexander, S.A. 1992. Root- and stem-colonizing insects recovered from eastern white pines with procerum root disease. Canadian Journal of Forest Research, 22: 17121716.CrossRefGoogle Scholar
Rogers, D.L. 2002. In situ genetic conservation of Monterey pine (Pinus radiata D. Don): information and recommendations. Genetic Resources Conservation Program, Report No. 26. University of California Press, Davis, California.Google Scholar
Roy, D.F. 1966. Silvical characteristics of Monterey pine (Pinus radiata D. Don). US Forest Service Research Paper PSW-31.Google Scholar
Russin, J.S., Shain, L., and Nordin, G.L. 1984. Insects as carriers of virulent and cytoplasmic hypovirulent isolates of the chestnut blight fungus. Journal of Economic Entomology, 77: 838846.CrossRefGoogle Scholar
Sakamoto, J.M., Gordon, T.R., Storer, A.J., and Wood, D.L. 2001. The potential for Pityophthorus setosus to provide infection courts for pitch canker on Pinus radiata. Phytopathology, 91: S78.Google Scholar
SAS Institute Inc. 1996. SAS® system for mixed models. Edited by Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D.. SAS Institute Inc., Cary, North Carolina.Google Scholar
Schmale, D.G., and Gordon, T.R. 2003. Variation in susceptibility to pitch canker disease, caused by Fusarium circinatum, in native stands of Pinus muricata. Plant Pathology, 52: 720725.CrossRefGoogle Scholar
Schmidt, R.A. 1978. Diseases in forest ecosystems: the importance of functional diversity. In Plant disease, an advanced treatise. Vol. II. Edited by Horsfall, J.G. and Cowling, E.B.. Academic Press, Inc., New York.Google Scholar
Smerlis, E., and Finnegan, R.J. 1981. Bark beetle carriers of Gremmeniella abietina and other pathogenic microfungi. Canadian Forestry Service Research Notes, 1: 24.Google Scholar
Storer, A.J., Dallara, P.L., Wood, D.L., and Gordon, T.R. 1994. Pitch canker in California: geographic and host range expansion. California Agriculture, 48: 913.CrossRefGoogle Scholar
Storer, A.J., Gordon, T.R., Wood, D.L., and Bonello, P. 1997. Pitch canker disease of pines and current and future impacts. Journal of Forestry, 95: 2126.Google Scholar
Storer, A.J., Bonello, P., Gordon, T.R., and Wood, D.L. 1999. Evidence of resistance to the pitch canker pathogen (Fusarium subglutinans f. sp. pini) in native stands of Monterey pine (Pinus radiata). Forest Science, 45: 500505.Google Scholar
Storer, A.J., Wood, D.L., and Gordon, T.R. 2002. The epidemiology of pitch canker of Monterey pine in California. Forest Science, 48: 694700.Google Scholar
Storer, A.J., Wood, D.L., and Gordon, T.R. 2004. Twig beetles, Pityophthorus spp. (Coleoptera: Scolytidae), as vectors of the pitch canker pathogen in California. The Canadian Entomologist, 136: 685693.CrossRefGoogle Scholar
Viljoen, A., and Wingfield, M.J. 1994. First report of Fusarium subglutinans f. sp. pini on pine seedlings in South Africa. Plant Disease, 78: 309312.CrossRefGoogle Scholar
Vogler, D.R., Gordon, T.R., Aegerter, B.J., Kirkpatrick, S.C., Lunak-Stover, P., and Violett, P. 2004. First report of the pitch canker fungus (Fusarium circinatum) in the Sierra Nevada of California. Plant Disease, 88: 772.Google ScholarPubMed
Wikler, K., and Gordon, T.R. 2000. An initial assessment of genetic relationships among populations of Fusarium circinatum in different parts of the world. Canadian Journal of Botany, 78: 709720.CrossRefGoogle Scholar
Wikler, K., Storer, A.J., Newman, W., Gordon, T.R., and Wood, D.L. 2003. The dynamics of an introduced pathogen in a native Monterey pine (Pinus radiata) forest. Forest Ecology and Management, 179: 209221.CrossRefGoogle Scholar
Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs 6.Google Scholar
Wood, S.L., and Bright, D.E. 1992. A catalog of Scolytidae and Platypodidae (Coleoptera). Part 2. Taxonomic index. Great Basin Naturalist Memoirs 13.Google Scholar