Skip to main content Accessibility help


  • Ronald J. Prokopy (a1), Sylvia S. Cooley (a1), Luis Galarza (a1), Christopher Bergweiler (a1) and Carol R. Lauzon (a2)...


Published studies have shown inconsistent effects of proteinaceous bait sprays against apple maggot flies, Rhagoletis pomonella (Walsh). Explanations of inconsistency could involve the presence of natural food such as bird droppings competing with bait sprays for attraction of flies. Under field, semi-field, or laboratory conditions, we found that: (1) aqueous solutions of 10% proteinaceous bait (Nulure) were significantly more attractive than water to protein-denied but not to protein-provided apple maggot flies; (2) addition of 2% toxicant (malathion 50 EC) did not affect attractiveness of Nulure droplets but did significantly deter feeding by arriving protein-provided flies (though not protein-denied flies); (3) droppings collected from barn swallows, chickens, and unidentified birds on apple trees were significantly more attractive than solutions or droplets of Nulure to protein-denied flies; (4) droppings that were freshly deposited or fresh from cold storage were significantly less attractive than droppings held under ambient conditions for 1 or 2 days; (5) droppings allowed to dry for 1 day at 25 °C, 60% RH were no less attractive than droppings that received water to simulate dew or rainfall; and (6) droppings treated with antibiotics were significantly less attractive than droppings not treated with antibiotics, indicating that bacteria may be involved in generating attractive volatiles. Together, these findings suggest that in situations where natural sources of protein such as bird droppings or insect honeydew are abundant, apple maggot flies may be relatively unaffected by addition of proteinaceous bait to insecticide sprays.

Les travaux publiés dans la littérature ont mis en lumière les variations des effets des substances protéiques vaporisées pour attirer la Mouche de la pomme, Rhagoletis pomonella (Walsh). Il se peut que la présence d’aliments naturels, comme la fiente d’oiseau, puisse entrer en compétition avec les substances vaporisées et soit donc responsable des variations observées. Dans des conditions naturelles et semi-naturelles et dans des conditions de laboratoire, nous avons constaté que (1) des solutions aqueuses contenant 10% de substances protéiques (Nulure) avaient un effet attractif significativement plus grand que l’eau chez les mouches privées de protéines, mais pas chez les mouches non privées de protéines; (2) l’addition de 2% d’une substance toxique (malathion 50 EC) n’a pas modifié l’effet attractif des gouttelettes de Nulure, mais a significativement inhibé l’alimentation chez les mouches non privées de protéines (mais pas chez les mouches privées de protéines); (3) sur les pommiers, de la fiente provenant d’Hirondelles des granges, de poulets et d’oiseaux non identifiés s’est avérée significativement plus attractive que des solutions ou des gouttelettes de Nulure chez les mouches privées de protéines; (4) la fiente fraîche ou la fiente gardée au froid étaient moins attirantes que la fiente gardée dans des conditions ambiantes durant 1 ou 2 jours; (5) la fiente séchée pendant 1 jour à 25 °C, à une humidité relative de 60%, n’était pas moins attractive que la fiente arrosée d’eau pour simuler l’effet de la rosée ou de la pluie; (6) la fiente traitée aux antibiotiques était significativement moins attractive que la fiente non traitée, ce qui indique que les bactéries peuvent être en partie responsables du pouvoir d’attraction de ces substances. Dans l’ensemble, ces résultats semblent démontrer que, dans les situations où abondent des sources naturelles de protéines, comme la fiente d’oiseau ou le miellat d’insecte, la Mouche de la pomme peut rester relativement insensible à l’addition de substances protéiques aux insecticides vaporisés.

[Traduit par la rédaction]



Hide All
Chambers, D.L., Cunningham, R.T., Lichty, R.W., and Thrailkill, R.R.. 1974. Pest control by attractants: A case study demonstrating economy, specificity and environmental acceptability. Bioscience 24: 150152.
Dolphin, R.E., Cleveland, M.L., Still, G.W., and Mouzin, T.E.. 1970. Reduction of populations of apple maggots with bait sprays. Journal of Economic Entomology 62: 18781881.
Goodrich, B.S., Gambale, S., Pennycuik, P.R., and Redhead, T.D.. 1990. Volatiles from feces of wild male house mice. Journal of Chemical Ecology 16: 20912105.
Gow, P.L. 1954. Proteinaceous baits for the oriental fruit fly. Journal of Economic Entomology 47: 153160.
Hendrichs, J., Cooley, S., and Prokopy, R.. 1990. How often do apple maggot flies need to eat? Massachusetts Fruit Notes 55(3): 1213.
Hendrichs, J., Cooley, S., Prokopy, R., and Lauzon, C.. 1990. What kinds of food do apple maggot flies need for survival and reproduction? Massachusetts Fruit Notes 55(3): 911.
Hendrichs, J., Hendrichs, M., Prokopy, J., and Prokopy, R.. 1990. How do apple maggot flies detect the presence of distant food? Massachusetts Fruit Notes 55(3): 35.
Hendrichs, J., and Prokopy, R.. 1990. Where do apple maggot flies find food in nature? Massachusetts Fruit Notes 55(3): 13.
Lauzon, C.R. 1991. The Microbial Ecology of Rhagoletis pomonella. Ph.D. thesis, University of Vermont, Burlington, VT.
Lee, C.N., and Toyama, G.M.. 1990. Ovipositional preference exhibited by Musca sorbens (Diptera: Muscidae) to feces of cows fed different rations. Environmental Entomology 19: 12961298.
MacCollom, G.B., Lauzon, C.R., Weires, R.W., and Rutkowski, A.A.. 1992. Attraction of adult apple maggot (Diptera: Tephritidae) to microbial isolates. Journal of Economic Entomology 85: 8387.
Mohammad, A.B., and AliNiazee, M.T.. 1989. Malathion bait sprays for control of apple maggot. Journal of Economic Entomology 82: 17161721.
Neilson, W.T.A. 1960. Field tests of some hydrolyzed proteins as lures for the apple maggot, Rhagoletis pomonella. The Canadian Entomologist 92: 464467.
Neilson, W.T.A., and Maxwell, C.W.. 1964. Field tests with a malathion bait spray for control of the apple maggot, Rhagoletis pomonella. Journal of Economic Entomology 57: 192194.
Neilson, W.T.A., and Sanford, K.H.. 1974. Apple maggot control with baited and unbaited sprays of azinphosmethyl. Journal of Economic Entomology 67: 556557.
Prokopy, R.J., Papaj, D.R., Hendrichs, J., and Wong, T.T.Y.. 1992. Behavioral responses of Ceratitis capitata flies to bait spray droplets and natural food. Entomologia Experimentalis et Applicata 64: 247257.
Reissig, W.H. 1975. Evaluation of traps for apple maggot in unsprayed and commercial apple orchards. Journal of Economic Entomology 68: 445448.
Reissig, W.H. 1977. Response of the apple maggot, Rhagoletis pomonella, and the cherry fruit fly, R. fausta, to protein hydrolysate bait sprays. The Canadian Entomologist 109: 161164.
Reissig, W.H. 1988. Management of the apple maggot in the eastern United States. pp. 5672in AliNiazee, M.T. (Ed.), Ecology and Management of Economically Important Fruit Flies. Special Report 830. Oregon State University Agriculture Experiment Station, Corvallis, OR.
Roessler, Y. 1989. Insecticidal bait and cover sprays. pp. 329335in Robinson, A.S., and Hooper, G. (Eds.), Fruit Flies: Their Biology, Natural Enemies and Control. Vol. A. Elsevier, Amsterdam.
Steiner, L. 1969. Control and eradication of fruit flies on citrus. Proceedings of 1st International Citrus Symposium 2: 881887.


  • Ronald J. Prokopy (a1), Sylvia S. Cooley (a1), Luis Galarza (a1), Christopher Bergweiler (a1) and Carol R. Lauzon (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed