Skip to main content Accessibility help
×
Home

BIOCLIMATIC STUDIES OF THE APHID PARASITE PRAON EXSOLETUM: I. EFFECTS OF TEMPERATURE ON THE FUNCTIONAL RESPONSE OF FEMALES TO VARYING HOST DENSITIES

  • P. S. Messenger (a1)

Abstract

Using bioclimatic chambers to provide diurnally fluctuating temperature and humidity conditions, the relationship between fecundity of females of the aphid parasite, Praon exsoletum (Nees), and different host densities, was examined over a wide range of mean temperatures. At each temperature level the number of eggs laid by females was found to vary with host density in accordance with the functional response curve (disc equation) of Holling. Superparasitism was common at all temperature levels studied, and, irrespective of host density, eggs were found laid at random with respect to hosts present. The functional response equation was thus modified so that number of hosts attacked was determined by both number of hosts present and number of eggs laid. Using this modified disc equation, the bioclimatic characteristics of parasite oviposition were examined from rhc standpoint of varying temperature levels. Oviposition was limited to mean temperatures between 8° and 29°C; near these limits the maximum number of eggs laid and the maximum number of hosts attacked were low. At medial mean temperatures (13°–24°) the number of eggs laid per parasite was high, averaging between 70 and 110 each 12-hour day. At these same medial temperatures, according to the modified disc equation, the average "handling" time per oviposition attack was shortest, and the parasite effective searching rate fastest. Averaged over a 12-hour day (this parasite does not oviposit in darkness), females of P. exsoletum were capable of laying from seven to nine eggs per hour at temperatures between 15° and 24° respectively. In all cases, the number of hosts attacked varied with numbers of eggs laid in accordance with Thompson’s superparasitism formula.

Copyright

References

Hide All
Burnett, T. 1951. Effects of temperature and host density on the rate of increase of an insect parasite. Am. Nat. 85: 337352.
Burnett, T. 1954. Influences of natural temperatures and controlled host densities on ovi-position of an insect parasite. Physiol. Zoöl. 27: 239248.
Burnett, T. 1958 a. Effect of host distribution on the reproduction of Encarsia formosa Gahan (Hymenoptera: Chalcidoidea). Can. Ent. 90: 179191.
Burnett, T. 1958 b. Effect of area of search on reproduction of Encarsia formosa Gahan (Hymenoptera: Chalcidoidea). Can. Ent. 90: 225229.
DeBach, p., and Smith, H. S.. 1941. The effect of host density on the rate of reproduction of entomophagous parasites. J. econ. Ent. 34: 741745.
Force, D. C., and Messenger, P. S.. 1964. Fecundity, reproductive rates, and innate chpacity for increase of three parasites of Therioaphis maculata (Buckton). Ecology 45: 706715.
Hafez, M. 1961. Seasonal fluctuations of population density of the cabbage aphid, Brevicorynae brassicae (L.), in the Netherlands, and the role of its parasite, Aphidius (Diaeretiella) rapae(Curtis). H. Veenman & Zonen N.V., Wageningen. 1961.
Haynes, D. L., and Sisojević, P.. 1966. Predatory behavior of Philodromus rufus Walckenaer (Araneae: Thomisidae). Can. Ent. 98: 113133.
Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Ent. 91: 385398.
Holling, C. S. 1963. An experimental component analysis of population processes. Mem. ent. Soc. Can., No. 32.
Holling, C. S. 1966. The functional response of invertebrate predators to prey density. Mem. ent. Soc. Can., No. 48.
Messenger, P. S. 1964 a. Use of life tables in a bioclimatic study of an experimental aphidbraconid wasp host-parasite system. Ecology 45: 119131.
Messenger, P. S. 1964 b. The influence of rhythmically fluctuating temperatures on the development and reproduction of the spotted alfalfa aphid, Therioaphis maculata. J. econ. Ent. 57: 7176.
Messenger, P. S. 1968. Bioclimatic studies of the aphid parasite, Praon exsoletum (Nees). 2. Effects of temperature on the limits to development and developmental rates. In prep.
Messenger, P. S., and Force, D. C.. 1963. An experimental host–parasite system: Therioaphis maculata (Buckton) – Praon palitans Muesebeck (Homoptera: Aphididae – Hymenoptera: Braconidae). Ecology 44: 532540.
Morris, R. F. 1963. The effect of predator age and prey defense on the functional response of Podisus maculiventris Say to the density of Hyphantria cunea Drury. Can. Ent. 95: 10091020.
Schlinger, E. I., and Hall, J. C.. 1959. A synopsis of the biologies of three imported parasites of the spotted alfalfa aphid. J. econ. Ent. 52: 154157.
Schlinger, E. I., and Hall, J. C.. 1960. The biology, behavior, and morphology of Praon palitans Muesebeck, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Buckton) (Hymenoptera: Braconidae, Aphidiinae). Ann. ent. Soc. Am. 53: 144160.
Sekhar, P. S. 1957. Mating, oviposition, and discrimination of hosts by Aphidius testaceipes (Cresson) and Praon aguti Smith, primary parasites of aphids. Ann. ent. Soc. Am. 50: 370375.
Solomon, M. E. 1949. The natural control of animal populations. J. Anim. Ecol. 18: 135.
Spencer, H. 1926. Biology of the parasites and hyperparasites of -aphids. Ann. ent. Soc. Am. 19: 119157.
Stary, P. 1964. Biological control of Megoura viciae Bckt. in Czechoslovakia. Cas. csl. Spol. ent. 61: 301322.
Thompson, W. R. 1924. La théorie mathématique de l'action des parasites entomophages et le facteur du hasard. Annals Fac. Sci. Marseille 2: 6989.
Thompson, W. R. 1939. Biological control and the theories of the interactions of populations. Parasitology 31: 299388.
Ullyett, G. C. 1949 a. Distribution of progeny by Chelonus texanus Cress. (Hymenoptera: Braconidae). Can. Ent. 81: 2544.
Ullyett, G. C. 1949 b. Distribution of progeny by Cryptus inornatus Pratt (Hymenoptera: Ichneumonidae). Can. Ent. 81 : 285299.
Van den Bosch, R., Schlinger, E. I., Dietrick, E. J., Hall, J. C., and Puttler, B.. 1964. Studies on succession, distribution, and phenology of imported parasites of Therioaphis trifolii (Monell) in southern California. Ecology 45: 602621.
Watt, K. E. F. 1959. A mathematical model for the effect of densities of attacked and attacking species on the number attacked. Can. Ent. 91: 129144.
Wheeler, E. W. 1923. Some braconids parasitic on aphids and their life-history. (Hym.). Ann. ent. Soc. Am. 16: 129.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed