Skip to main content Accessibility help
×
Home

Bioclimatic approach to assessing the potential impact of climate change on two flea beetle (Coleoptera: Chrysomelidae) species in Canada

  • O. Olfert (a1), R.M. Weiss (a1), R.H. Elliott (a1) and J.J. Soroka (a1)

Abstract

Both the striped flea beetle, Phyllotreta striolata (Fabricius), and crucifer flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), are invasive alien species to North America. In western Canada, they are the most significant insect pests of cruciferous (Brassicaceae) crops. Climate is the one of the most dominant factors regulating the geographic distribution and population density of most insect species. Recent bioclimatic simulation models of the two flea beetle species fostered a better understanding of how the two species responded to selected climate variables. They demonstrated that selected climate variables increased population densities and geographic range of the two species. General circulation model inputs were applied in this study to assess the impact of a changing climate on the response of P. cruciferae and P. striolata populations. Model output, using the climate change scenarios, predicted that both P. cruciferae and P. striolata populations will shift north in future climates and the degree of geographic overlap between these two species will be greater than for current climate. This suggests that the two species could potentially cause economic losses over an expanded area in the future.

Copyright

Corresponding author

1 Corresponding author (e-mail: owen.olfert@agr.gc.ca)

Footnotes

Hide All

Subject editor: Kevin Floate

Footnotes

References

Hide All
Antwi, F.B. and Reddy, G.V.P. 2016. Efficacy of entomopathogenic nematodes and sprayable polymer gel against crucifer flea beetle (Coleoptera: Chrysomelidae) on canola. Journal of Economic Entomology, 109: 17061712.
Beirne, B.P. 1971. Pest insects of annual crop plants in Canada. Part I. Lepidoptera; II, Diptera; III, Coleoptera. Memoirs of the Entomological Society of Canada, 103(Supplement S78): 1124.
Burgess, L. 1977. Flea beetles (Coleoptera: Chrysomelidae) attacking rape crops in the Canadian prairie provinces. The Canadian Entomologist, 109: 2132.
Cárcamo, H.A., Otani, J.K., Dosdall, L.M., Blackshaw, R.E., Clayton, G.W., Harker, K.N., et al. 2008. Effects of seeding date and canola species on seedling damage by flea beetles in three ecoregions. Journal of Applied Entomology, 132: 623631.
CliMond. 2017. Global climatologies for bioclimate modelling. Available from. http://www.climond.org [accessed 17 November 2015].
Dosdall, L.M. and Stevenson, F.C. 2005. Managing flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola with seeding date, plant density, and seed treatment. Agronomy Journal, 97: 15701578.
Global Biodiversity Information Facility. 2015. GBIF data portal. Available from http://www.gbif.org [accessed 17 November 2015].
Haye, T., Olfert, O., Weiss, R.M., Gariepy, T.D., Broadbent, B., and Kuhlmann, U. 2013. Bioclimatic analyses of distributions of a parasitoid Peristenus digoneutis and its host species Lygus spp. in Europe and North America. Agricultural and Forest Entomology, 15: 4355.
Kielen, A. 2012. Flea beetles: populations are shifting. Alberta Farmer. September 13, 2012. Available from http://www.albertafarmexpress.ca/2012/09/13/flea-beetles-populations-are-shifting/ [accessed 20 February 2016].
Kirkwood, V., Bootsma, A., de Jong, R., Dumanski, J., Hiley, J.C., Huffman, E.C., et al. 1993. Agroecological resource area databases for the prairies: user’s manual. Centre for Land and Biological Resources Research Contribution 93-17. Technical Bulletin 1993-13E. Centre for Land and Biological Resources Research, Ottawa, Ontario, Canada.
Knodel, J.J. and Olson, D.L. 2002. Crucifer flea beetle: biology and integrated pest management in canola. Available from www.ag.ndsu.edu/extensionentomology/field-crops-insect-pests/Documents/canola/crucifer-flea-beetle-biology-and-integrated-pest-management-in-canola [accessed 5 January 2016].
Knodel, J.J., Olson, D.L., Hanson, B.K., and Henson, R.A. 2008. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola. Journal of Economic Entomology, 101: 810821.
Kriticos, D.J., Webber, B.L., Leriche, A., Ota, N., Macadam, I., Bathols, J., and Scott, J.K. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3: 5364.
Mika, A.M. and Newman, J.A. 2010. Climate change scenarios and models yield conflicting predictions about the future risk of an invasive species in North America. Agricultural and Forest Entomology, 12: 213221.
Mika, A.M., Weiss, R.M., Olfert, O., Hallett, R.H., and Newman, J.A. 2008. Will climate change be beneficial or detrimental to the invasive swede midge in North America? Contrasting predictions using climate projections from different general circulation models. Global Change Biology, 14: 17211733.
Milbrath, L.R., Weiss, M.J., and Schatz, B.G. 1995. Influence of tillage system, planting date, and oilseed crucifers on flea beetle populations (Coleoptera: Chrysomelidae). The Canadian Entomologist, 127: 289293.
Nakicenovic, N. and Swart, R. 2000. Special report on emissions scenarios. A special report of the working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom.
Olfert, O., Haye, T., Weiss, R.M., Kriticos, D.J., and Kuhlmann, U. 2016. Modelling the potential impact of climate change on future spatial and temporal patterns of biological control agents: Peristenus digoneutis (Hymenoptera: Braconidae) as a case study. The Canadian Entomologist, 148: 579594.
Olfert, O. and Weiss, R.M. 2006. Impact of climate change on potential distributions and relative abundances of Oulema melanopus, Meligethes viridescens and Ceutorhyncus obstrictus in Canada. Agriculture, Ecosystems and Environment, 113: 295301.
Olfert, O., Weiss, R.M., and Elliott, R.H. 2015. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. The Canadian Entomologist, 148: 5267.
Olfert, O., Weiss, R.M., Elliott, R.H., and Soroka, J.J. 2017. Bioclimatic approach to assessing factors influencing shifts in geographic distribution and density of two flea beetle species (Coleoptera: Chrysomelidae) in North America. The Canadian Entomologist, in press.
Olfert, O., Weiss, R.M., and Kriticos, D. 2011. Application of general circulation models to assess the potential impact of climate change on potential distribution and relative abundance of Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) in North America. Psyche, article ID 980372. Available from http://dx.doi.org/10.1155/2011/980372 [accessed 5 May 2015].
Olfert, O., Weiss, R.M., Turkington, K., Beckie, H., and Kriticos, D. 2012. Bioclimatic approach to assessing the potential impact of climate change on representative crop pests in North America. In Climate change and the Canadian agricultural environment. Topics in Canadian weed science, Volume 8. Edited by A.J.A. Ivany and R.E. Blackshaw. Canadian Weed Science Society, Pinawa, Manitoba, Canada. Pp 4769.
Pearson, R.G., Dawson, T.P., Berry, P.M., and Harrison, P.A. 2002. SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154: 289300.
Reddy, G.V.P., Tangtrakulwanich, K., Wu, S., Miller, J.H., Ophus, V.L., and Prewett, J. 2014. Sustainable management tactics for control of Phyllotreta cruciferae (Coleoptera: Chrysomelidae) on canola in Montana. Journal of Economic Entomology, 107: 661666.
Soroka, J.J. 2012. Potential flea beetle species composition shift in prairie canola. Final report to SaskCanola. Project CARP 2009-6 [online]. Available from. http://www.saskcanola.com/research/potential-flea-beetle-species-composition-shift-in-prairie-canola [accessed 24 February, 2017].
Soroka, J.J. 2013. Phyllotreta cruciferae (Goeze), crucifer flea beetle and Phyllotreta striolata (Fabricius), striped flea beetle (Coleoptera: Chrysomelidae). In Biological control programmes in Canada 2001–2012. Edited by P.G. Mason and D.R. Gillespie. CAB International, Wallingford, United Kingdom. Pp 248263.
Soroka, J.J. and Elliott, R.H. 2011. Innovative methods for managing flea beetles in canola. Prairie Soils and Crops, 4: 17. Available from. http://www.prairiesoilsandcrops.ca [accessed 20 February 2016].
Sutherst, R.W., Maywald, G.F., and Kriticos, D.J. 2007. CLIMEX version 3 user’s guide. Hearne Scientific Software Pty, Melbourne, Australia.
Tansey, J.A., Dosdall, L.M., Keddie, B.A., and Sarfraz, R.M. 2008. Differences in Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) responses to neonicotinoid seed treatments. Journal of Economic Entomology, 101: 159167.
Thuiller, W. 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10: 20202027.
Turnock, W.J., Lamb, R.J., and Bilodeau, R.J. 1987. Abundance, winter survival, and spring emergence of flea beetles (Coleoptera: Chrysomelidae) in a Manitoba grove. The Canadian Entomologist, 119: 419426.
Urquizo, N., Bastedo, J., Brydges, T., and Shear, H. 2000. Ecological assessment of the Boreal Shield Ecozone. Minister of Public Works and Government Services Canada, Ottawa, Ontario, Canada.
Wylie, H.G. 1979. Observations on distribution, seasonal life history, and abundance of flea beetles (Coleoptera: Chrysomelidae) that infest rape crops in Manitoba. The Canadian Entomologist, 111: 13451353.
Wylie, H.G., Turnock, W.J., and Burgess, L. 1984. Phyllotreta spp., flea beetles (Coleoptera: Chrysomelidae). In Biological control programmes against insects and weeds in Canada 1969–1980. Edited by J.S. Kelleher and M.A. Hulme. Commonwealth Agricultural Bureaux, Slough, United Kingdom. Pp 7376.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed