Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T18:17:03.367Z Has data issue: false hasContentIssue false

An individual-based phenology model for western spruce budworm (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  12 November 2013

V.G. Nealis*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
J. Régnière
Affiliation:
Natural Resources Canada, Canadian Forest Service, Centre de foresterie des Laurentides, Sainte-Foy, Québec, Canada
*
1Corresponding author (e-mail: Vince.Nealis@NRCan-RNCan.gc.ca).

Abstract

An individual-based phenology model for western spruce budworm, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), was developed using stage-specific rates of development, oviposition, and egg hatch observed under controlled conditions at several temperatures. Model output was compared with age distributions estimated by sampling field populations of budworm at several locations in British Columbia, Canada, over many years. The fit of the model was very good for the entire life cycle of the insect. We further validate the model by comparing output with independent observations of moth flight phenology of C. occidentalis and Choristoneura fumiferana (Clemens) in populations of Cypress Hills, Canada and illustrate spatial variation in the seasonal occurrence of early-stage feeding western spruce budworm over most of its range in western Canada. In addition to serving as the underlying structure for the modelling of population dynamics at the seasonal level, the model can be used to predict the time of occurrence of different life stages for precise timing of pest management operations.

Résumé

Un modèle de phénologie basé sur les individus a été développé pour la tordeuse occidentale, Choristoneura occidentalis Freeman (Lepidoptera: Tortricidae), en utilisant les taux de développement spécifiques à chaque stade, ainsi que les taux d'oviposition et d’éclosion des œufs observés en conditions contrôlées à plusieurs températures. Les extrants du modèle ont été comparés à la distribution d’âges estimée par échantillonnage de populations naturelles à plusieurs endroits en Colombie-Britannique, Canada, pendant plusieurs années. L'ajustement du modèle est très bon pour tout le cycle vital de l'insecte. Nous validons le modèle plus à fond en comparant ses extrants à des observations indépendantes de la phénologie du vol des papillons de C. occidentalis et C. fumiferana dans des populations de Cypress Hills, Canada. Nous illustrons également la variation spatiale dans les dates d'apparition des jeunes stades larvaires de la tordeuse occidentale sur une grande portion de son aire de distribution dans l'ouest du Canada. En plus de constituer une excellente structure de base pour la modélisation de la dynamique saisonnière des populations de l'insecte, ce modèle peut être utilisé pour mieux synchroniser les opérations de lutte intégrée avec l'apparition des stades appropriés.

Type
Behaviour & Ecology
Copyright
Copyright © Her Majesty the Queen in Right of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Rob Johns

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology, 5: 388396.Google Scholar
Bentz, B.J., Régnière, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., et al. 2010. Climate change and bark beetles of the western United States and Canada: direct and indirect effects. BioScience, 60: 602613.CrossRefGoogle Scholar
Both, C., van Asch, M., Bijlsma, R.G., van den Burg, A.B., Visser, M.E. 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? Journal of Animal Ecology, 78: 7383.Google Scholar
Chuine, I. 2010. Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B, 365: 31493160.Google Scholar
Cooke, B.J.Régnière, J. 1996. An object-oriented, process-based stochastic simulation model of Bacillus thuringiensis efficacy against spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). International Journal of Pest Management, 42: 291306.Google Scholar
Furniss, R.L.Carolin, V.M. 1977. Western forest insects. Miscellaneous Publication No. 1339. United States Department of Agriculture, Forest Service, Washington, DC, United States of America.Google Scholar
Gilbert, N.Raworth, D.A. 1996. Insects and temperature – a general theory. The Canadian Entomologist, 128: 113.Google Scholar
Gray, D.R., Ravlin, F.W., Braine, J.A. 2001. Diapause in the gypsy moth: a model of inhibition and development. Journal of Insect Physiology, 47: 173184.Google Scholar
Grimm, V.Railsback, S.F. 2005. Individual-based modeling and ecology. Princeton University Press, Princeton, New Jersey, United States of America.CrossRefGoogle Scholar
Kemp, W.P., Dennis, B., Beckwith, R.C. 1986. Stochastic phenology model for the western spruce budworm (Lepidoptera: Tortricidae). Environmental Entomology, 15: 547554.Google Scholar
Kemp, W.P., Everson, D.O., Wellington, W.G. 1985. Regional climatic patterns and western spruce budworm outbreaks. Technical Bulletin No. 1693. United States Department of Agriculture Forest Service, Washington, DC, United States of America.Google Scholar
Korzukhin, M.D., Ter-Mikaelian, M.T., Wagner, R.G. 1996. Process versus empirical models: which approach for forest pest management? Canadian Journal of Forest Research, 26: 879887.CrossRefGoogle Scholar
Lumley, L.M.Sperling, F.A.H. 2011. Life-history traits maintain the genomic integrity of sympatric species of the spruce budworm (Choristoneura fumiferana) group on an isolated forest island. Ecology and Evolution, 1: 119131.Google Scholar
Lysyk, T.J.Nealis, V.G. 1988. Temperature requirements for development of the jack pine budworm (Lepidoptera: Tortricidae) and two if its parasitoids (Hymenoptera). Journal of Economic Entomology, 81: 10451051.Google Scholar
McMorran, A. 1965. A synthetic diet for the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). The Canadian Entomologist, 97: 5862.Google Scholar
Murdock, T.Q., Taylor, S.W., Flower, A., Mehlenbacher, A., Montenegro, A., Zwiers, F.W., et al. 2013. Pest outbreak distribution and forest management impacts in a changing climate in British Columbia. Environmental Science and Policy, 26: 7589.Google Scholar
Nealis, V.G.Nault, J.R. 2005. Seasonal changes in foliar terpenes indicate suitability of Douglas-fir buds for western spruce budworm. Journal of Chemical Ecology, 31: 683696.Google Scholar
Nealis, V.G., Noseworthy, M., Turnquist, R., Waring, V.R. 2009. Balancing risks of disturbance from mountain pine beetle and western spruce budworm. Canadian Journal of Forest Research, 39: 839848.Google Scholar
Nealis, V.G.Régnière, J. 2009. Risk of dispersal in western spruce budworm. Agricultural and Forest Entomology, 11: 213223.Google Scholar
Nealis, V.G., Régnière, J., Gray, D. 2001. Modeling seasonal development of the gypsy moth in a novel environment for decision support of an eradication program. In Proceedings integrated management and dynamics of forest defoliating insects, Victoria, British Columbia, August 15–19, 1999. Edited by A.M. Liebhold, M.L. McManus, I.S. Otvos, and S.L.C. Forbrooke. GTR NE-277. United States Department of Agriculture Forest Service, Newtown Square, Pennsylvania, United States of America. Pp. 125132.Google Scholar
Powell, J.A.Logan, J.A. 2005. Insect seasonality: circle map analysis of temperature-driven life cycles. Theoretical Population Ecology, 67: 161179.Google Scholar
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). The Canadian Entomologist, 114: 811825.Google Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its life history. The Canadian Entomologist, 119: 717728.Google Scholar
Régnière, J. 1990. Diapause termination and changes in thermal responses during postdiapause development in larvae of the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 36: 727735.CrossRefGoogle Scholar
Régnière, J. 1996. Generalized approach to landscape-wide seasonal forecasting with temperature-driven simulation models. Environmental Entomology, 25: 869881.Google Scholar
Régnière, J.Logan, J.A. 2003. Animal life cycle models. In Phenology: an integrative environmental science. Edited by M.D. Shwartz. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 237254.Google Scholar
Régnière, J., Nealis, V., Porter, K. 2009. Climate suitability and management of the gypsy moth invasion into Canada. Biological Invasions, 11: 135148.Google Scholar
Régnière, J., Powell, J., Bentz, B., Nealis, V. 2012a. Effects of temperature on development, survival and reproduction of insects: experimental design, data analysis and modeling. Journal of Insect Physiology, 58: 634647.Google Scholar
Régnière, J., St-Amant, R., Béchard, A. 2013. BioSIM 10–User's manual. Information Report LAU-X-137E. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, Québec, Canada.Google Scholar
Régnière, J., St-Amant, R., Duval, P. 2012b. Predicting insect distributions under climate change from physiological responses: spruce budworm as an example. Biological Invasions, 14: 15711586.Google Scholar
Régnière, J.You, M. 1990. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecological Modelling, 54: 277297.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., Magnusun, C.E. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology, 88: 719731.Google Scholar
Sharpe, P.J.H.DeMichele, D.W. 1977. Reaction kinetics of poikilotherm development. Journal of Theoretical Biology, 64: 649670.Google Scholar
Swetnam, T.W.Lynch, A.M. 1993. Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecological Monographs, 63: 399424.CrossRefGoogle Scholar
Thomson, A.J.Benton, R. 2007. A 90-year sea warming trend explains outbreak patterns of western spruce budworm on Vancouver Island. Forestry Chronicle, 83: 867869.Google Scholar
Thomson, A.J., Harris, J.W.E., Silversides, R.H., Shepherd, R.F. 1983. Effects of elevation on rate of development of western spruce budworm (Lepidoptera: Tortricidae) in British Columbia. The Canadian Entomologist, 115: 11811187.Google Scholar
Thomson, A.J., Shepherd, R.F., Harris, J.W.E., Silversides, R.H. 1984. Relating weather to outbreaks of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Tortricidae), in British Columbia. The Canadian Entomologist, 116: 375381.Google Scholar
Volney, W.J.A.Fleming, R.A. 2007. Spruce budworm (Choristoneura spp.) biotype reactions to forest and climate characteristics. Global Change Biology, 13: 16301643.Google Scholar
Volney, W.J.A.Liebhold, A.M. 1985. Post-diapause development of sympatric Choristoneura occidentalis and C. retiniana (Lepidoptera: Tortricidae) and their hybrids. The Canadian Entomologist, 117: 14791488.Google Scholar
Volney, W.J.A., Waters, W.E., Akers, P., Liebhold, A.M. 1983. Variation in spring emergence patterns among western Choristoneura spp. (Lepidoptera: Tortricidae) populations in southern Oregon. The Canadian Entomologist, 115: 199209.Google Scholar
Williams, D.W.Liebhold, A.M. 1995. Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae). Environmental Entomology, 24: 19.Google Scholar