Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T23:22:25.618Z Has data issue: false hasContentIssue false

Adult size and sex ratio variation of Cerambyx welensii (Coleoptera: Cerambycidae) in Mediterranean oak (Fagaceae) woodlands

Published online by Cambridge University Press:  20 April 2018

Luis M. Torres-Vila*
Affiliation:
Servicio de Sanidad Vegetal, Consejería de Medio Ambiente y Rural PAyT, Junta de Extremadura, Avda. Luis Ramallo s/n, 06800 Mérida, Badajoz, Spain
F. Javier Mendiola-Díaz
Affiliation:
Servicio de Sanidad Vegetal, Consejería de Medio Ambiente y Rural PAyT, Junta de Extremadura, Avda. Luis Ramallo s/n, 06800 Mérida, Badajoz, Spain
Álvaro Sánchez-González
Affiliation:
Servicio de Sanidad Vegetal, Consejería de Medio Ambiente y Rural PAyT, Junta de Extremadura, Avda. Luis Ramallo s/n, 06800 Mérida, Badajoz, Spain

Abstract

Adult size is the trait most closely correlated with reproductive output in insects, but may also have important selective implications determining additional fitness gains. In longhorn beetles, adult size-mediated ultimate benefits may arise from mate choice, male antennal spread width or male fighting for mates. In this paper, we examined factors potentially shaping adult size of Cerambyx welensii Küster (Coleoptera: Cerambycidae), an emergent oak (Quercus Linnaeus; Fagaceae) pest. Sex ratio and adult length/weight allometric relationships were also explored. Overwintering adults were collected inside oaks in Extremadura (southwestern Spain) during 2011–2017 to ensure that larval development was completed in the wild. Sex, host species, and wood quality affected adult size, though some interactions occurred and among-host differences were weak. Adults collected inside older trees and wider branches were significantly larger. Adult size was unaffected by either elevation, aspect, or population density. There was a robust allometric scaling in both sexes between elytral/adult length and weight, females being heavier than males and males longer than females when adults were large. Female-biased sex ratios occurred in old/veteran trees and in dense/crowded larval populations. We discuss these results from an evolutionary perspective considering the potential impact of C. welensii adult size on population dynamics and management tactics.

Type
Behaviour & Ecology
Copyright
© Entomological Society of Canada 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Jon Sweeney

References

Andersen, J. and Nilssen, A.C. 1983. Intrapopulation size variation of free-living and tree-boring Coleoptera. The Canadian Entomologist, 115: 14531464.CrossRefGoogle Scholar
Atkinson, D. 1994. Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research, 25: 158.Google Scholar
Bertin, A. and Cezilly, F. 2003. Sexual selection, antennae length and the mating advantage of large males in Asellus aquaticus . Journal of Evolutionary Biology, 16: 698707.Google Scholar
Bonduriansky, R. 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biological Reviews, 76: 305339.Google Scholar
Buse, J., Schröder, B., and Assmann, T. 2007. Modelling habitat and spatial distribution of an endangered longhorn beetle – a case study for saproxylic insect conservation. Biological Conservation, 137: 372–281.CrossRefGoogle Scholar
Centro Nacional de Información Geográfica, Instituto Geográfico Nacional. 2016. MDT05: Modelo Digital del Terreno con paso de malla 5m (SRG: ETRS89) [online]. Available from http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=LIDAR [accessed 29 August 2017].Google Scholar
Chown, S.L. and Gaston, K.J. 2010. Body size variation in insects: a macroecological perspective. Biological Reviews, 85: 139169.Google Scholar
Crespi, B.J. 1989. Causes of assortative mating in arthropods. Animal Behaviour, 38: 9801000.Google Scholar
Crespi, B.J. 1990. Measuring the effect of natural selection on phenotypic interaction systems. The American Naturalist, 135: 3247.CrossRefGoogle Scholar
Duffy, E.A.J. 1953. A monograph of the immature stages of British and imported timber beetles (Cerambycidae). Jarrold and Sons, Norwich, United Kingdom.Google Scholar
Eberhard, W.G. 1996. Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, New Jersey, United States of America.Google Scholar
Flaherty, L., Sweeney, J.D., Pureswaran, D., and Quiring, D.T. 2011. Influence of host tree condition on the performance of Tetropium fuscum (Coleoptera: Cerambycidae). Environmental Entomology, 40: 12001209.Google Scholar
Fukaya, M. 2004. Effects of male body size on mating activity and female mate refusal in the yellow-spotted longicorn beetle, Psacothea hilaris (Pascoe) (Coleoptera: Cerambycidae): are small males inferior in mating? Applied Entomology and Zoology, 39: 603609.Google Scholar
Godfray, H.C.J. and Werren, J.H. 1996. Recent developments in sex ratio studies. Trends in Ecology and Evolution, 11: 5963.CrossRefGoogle ScholarPubMed
Goldsmith, S.K. and Alcock, J. 1993. The mating chances of small males of the cerambycid beetle Trachyderes mandibularis differ in different environments (Coleoptera: Cerambycidae). Journal of Insect Behavior, 6: 351360.CrossRefGoogle Scholar
Goldsmith, S.K., Stewart, Z., Adams, S., and Trimble, A. 1996. Body size, male aggression, and male mating success in the cottonwood borer, Plectrodera scalator (Coleoptera: Cerambycidae). Journal of Insect Behavior, 9: 719727.CrossRefGoogle Scholar
Grove, S.J. 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.Google Scholar
Hanks, L.M. 1999. Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annual Review of Entomology, 44: 483505.Google Scholar
Hanks, L.M., Millar, J.G., and Paine, T.D. 1991. Evaluation of cold temperatures and density as mortality factors of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) in California. Environmental Entomology, 20: 16531658.Google Scholar
Hanks, L.M., Millar, J.G., and Paine, T.D. 1996a. Body size influences mating success of the eucalyptus longhorned borer (Coleoptera: Cerambycidae). Journal of Insect Behavior, 9: 369382.CrossRefGoogle Scholar
Hanks, L.M., Millar, J.G., and Paine, T.D. 1996b. Mating behavior of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) and the adaptive significance of long “horns”. Journal of Insect Behavior, 9: 383393.Google Scholar
Hanks, L.M., Millar, J.G., and Paine, T.D. 1998. Dispersal of the eucalyptus longhorned borer (Coleoptera: Cerambycidae) in urban landscapes. Environmental Entomology, 27: 14181424.CrossRefGoogle Scholar
Hanks, L.M., Paine, T.D., and Millar, J.G. 1993. Host species preference and larval performance in the wood-boring beetle Phoracantha semipunctata F. Oecologia, 95: 2229.Google Scholar
Hanks, L.M., Paine, T.D., and Millar, J.G. 2005. Influence of the larval environment on performance and adult body size of the wood-boring beetle Phoracantha semipunctata . Entomologia Experimentalis et Applicata, 114: 2534.CrossRefGoogle Scholar
Honěk, A. 1993. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos, 66: 483492.Google Scholar
Hughes, A.L. and Hughes, M.K. 1982. Male size, mating success, and breeding habitat partitioning in the whitespotted sawyer, Monochamus scutellatus (Say) (Coleoptera: Cerambycidae). Oecologia, 55: 258263.Google Scholar
Hughes, A.L. and Hughes, M.K. 1985. Female choice of mates in a polygynous insect, the whitespotted sawyer Monochamus scutellatus . Behavioral Ecology and Sociobiology, 17: 385387.Google Scholar
Ivanović, J., Janković-Hladni, M., Stanić, V., Nenadović, V., and Frušić, M. 1989. The role of neurosecretion and metabolism in development of an oligophagous feeding habit in Morimus funereus larvae (Col., Cerambycidae). Comparative Biochemistry and Physiology Part A: Physiology, 94: 167171.Google Scholar
Kato, K., Yamada, H., and Shibata, E.I. 2000. Role of female adult size in reproductive fitness of Semanotus japonicus (Coleoptera: Cerambycidae). Applied Entomology and Zoology, 35: 327331.Google Scholar
Keena, M.A. 2002. Anoplophora glabripennis (Coleoptera: Cerambycidae) fecundity and longevity under laboratory conditions: comparison of populations from New York and Illinois on Acer saccharum . Environmental Entomology, 31: 490498.Google Scholar
Keller, L. and Reeve, H.K. 1995. Why do females mate with multiple males? The sexually selected sperm hypothesis. Advances in the Study of Behavior, 24: 291315.CrossRefGoogle Scholar
Kozłowski, J. and Wiegert, R.G. 1987. Optimal age and size at maturity in annuals and perennials with determinate growth. Evolutionary Ecology, 1: 231244.Google Scholar
Larsson, F.K. 2010. Limb amputation by male Neotropical longhorn beetles during competition for females. Biota Neotropica, 10: 339341.Google Scholar
Larsson, F.K. and Kustvall, V. 1990. Temperature reverses size-dependent male mating success of a cerambycid beetle. Functional Ecology, 4: 8590.Google Scholar
Lawrence, W.S. 1987. Dispersal: an alternative mating tactic conditional on sex ratio and body size. Behavioral Ecology and Sociobiology, 21: 367373.Google Scholar
Linsley, E.G. 1959. Ecology of Cerambycidae. Annual Review of Entomology, 4: 99138.Google Scholar
Lu, W., Wang, Q., Tian, M., Xu, J., Lv, J., and Qin, A. 2013. Mating behavior and sexual selection in a polygamous beetle. Current Zoology, 59: 257264.Google Scholar
Lupi, D., Jucker, C., Rocco, A., Harrison, R., and Colombo, M. 2015. Notes on biometric variability in invasive species: the case of Psacothea hilaris hilaris . Bulletin of Insectology, 68: 135145.Google Scholar
Michalcewicz, J. and Ciach, M. 2012. Biometry of adult Rosalia longicorn Rosalia alpina (L.) (Coleoptera: Cerambycidae) from the Polish Carpathians: a preliminary study. Polish Journal of Entomology, 8: 311320.Google Scholar
Mirth, C.K. and Riddiford, L.M. 2007. Size assessment and growth control: how adult size is determined in insects. Bioessays, 29: 344355.Google Scholar
Morales-Rodríguez, C., Sánchez-González, Á., Conejo-Rodríguez, Y., and Torres-Vila, L.M. 2015. First record of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Clavicipitaceae) infecting Cerambyx welensii (Coleoptera: Cerambycidae) and pathogenicity tests using a new bioassay method. Biocontrol Science and Technology, 25: 12131219.Google Scholar
Nagamine, K., Ishikawa, Y., and Hoshizaki, S. 2016. Insights into how longicorn beetle larvae determine the timing of metamorphosis: starvation-induced mechanism revisited. Public Library of Science One, 11: e0158831.Google Scholar
Nylin, S. and Gotthard, K. 1998. Plasticity in life-history traits. Annual Review of Entomology, 43: 6383.Google Scholar
Ray, A.M., Ginzel, M.D., and Hanks, L.M. 2009. Male Megacyllene robiniae (Coleoptera: Cerambycidae) use multiple tactics when aggressively competing for mates. Environmental Entomology, 38: 425432.Google Scholar
Reagel, P.F., Smith, M.T., and Hanks, L.M. 2012. Effects of larval host diameter on body size, adult density, and parasitism of cerambycid beetles. The Canadian Entomologist, 144: 435438.Google Scholar
Rodríguez-González, Á., Peláez, H.J., Mayo, S., González-López, O., and Casquero, P.A. 2016. Biometric traits of Xylotrechus arvicola adults from laboratory and grape fields. Vitis: Journal of Grapevine Research, 55: 7378.Google Scholar
Roff, D.A. 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York, New York, United States of America.Google Scholar
Scherrer, B. 1984. Biostatistique. Gaëtan Morin, Chicoutimi, Québec, Canada.Google Scholar
Shibata, E.I. 1998. Effects of Japanese cedar inner bark nutritional quality on development of Semanotus japonicus (Coleoptera: Cerambycidae). Environmental Entomology, 27: 14311436.Google Scholar
Smith, M.T., Bancroft, J., and Tropp, J. 2002. Age-specific fecundity of Anoplophora glabripennis (Coleoptera: Cerambycidae) on three tree species infested in the United States. Environmental Entomology, 31: 7683.Google Scholar
Sokal, R.R. and Rohlf, F.J. 1995. Biometry. Freeman and Company, New York, New York, United States of America.Google Scholar
Starzyk, J.R. and Lessaer, M. 1984. Studies on the distribution, morphology, biology and ecology of Pronocera angusta (Kriechb.) (Coleoptera, Cerambycidae). Journal of Applied Entomology, 97: 347360.Google Scholar
Starzyk, J.R. and Strojny, W. 1985. The morphological variability of adults of the great capricorn beetle, Cerambyx cerdo L. (Coleoptera, Cerambycidae). Polish Journal of Entomology, 55: 491504.Google Scholar
Starzyk, J.R. and Witkowski, Z. 1986. Dependence of the sex ratio of cerambycid beetles (Col., Cerambycidae) on the size of their host trees. Journal of Applied Entomology, 101: 140146.Google Scholar
Stearns, S.C. 1992. The evolution of life histories. Oxford University Press, Oxford, United Kingdom.Google Scholar
Stearns, S.C. and Kawecki, T.J. 1994. Fitness sensitivity and the canalization of life-history traits. Evolution, 48: 14381450.Google Scholar
Strojny, W. and Starzyk, J.R. 1986. Variability in size and colouring of adults of the musk-beetle, Aromia moschata moschata (L.) (Coleoptera, Cerambycidae). Polish Journal of Entomology, 56: 593608.Google Scholar
Systat. 2000. Systat 10.0. The system for statistics. Systat Software, Richmond, California, United States of America.Google Scholar
Tammaru, T. 1998. Determination of adult size in a folivorous moth: constraints at instar level? Ecological Entomology, 23: 8089.Google Scholar
Teder, T. and Tammaru, T. 2005. Sexual size dimorphism within species increases with body size in insects. Oikos, 108: 321334.Google Scholar
Thornhill, R. and Alcock, J. 1983. The evolution of insect mating systems. Harvard University Press, Cambridge, Massachusetts, United States of America.CrossRefGoogle Scholar
Togashi, K. 2007. Lifetime fecundity and female body size in Paraglenea fortunei (Coleoptera: Cerambycidae). Applied Entomology and Zoology, 42: 549556.Google Scholar
Togashi, K., Appleby, J.E., Oloumi-Sadeghi, H., and Malek, R.B. 2009. Age-specific survival rate and fecundity of adult Monochamus carolinensis (Coleoptera: Cerambycidae) under field conditions. Applied Entomology and Zoology, 44: 249256.CrossRefGoogle Scholar
Togashi, K., Kasuga, H., Yamashita, H., and Iguchi, K. 2008. Effect of host tree species on larval body size and pupal-chamber tunnel of Monochamus alternatus (Coleoptera: Cerambycidae). Applied Entomology and Zoology, 43: 235240.Google Scholar
Torres-Vila, L.M. 2017. Reproductive biology of the great capricorn beetle, Cerambyx cerdo (Coleoptera: Cerambycidae): a protected but occasionally harmful species. Bulletin of Entomological Research, 107: 799811.Google Scholar
Torres-Vila, L.M., Mendiola-Diaz, F.J., Conejo-Rodríguez, Y., and Sánchez-González, Á. 2016. Reproductive traits and number of matings in males and females of Cerambyx welensii (Coleoptera: Cerambycidae) an emergent pest of oaks. Bulletin of Entomological Research, 106: 292303.Google Scholar
Torres-Vila, L.M., Mendiola-Diaz, F.J., and Sánchez-González, Á. 2017a. Dispersal differences of a pest and a protected Cerambyx species (Coleoptera: Cerambycidae) in oak open woodlands: a mark–recapture comparative study. Ecological Entomology, 42: 1832.Google Scholar
Torres-Vila, L.M., Sánchez-González, Á., Merino-Martínez, J., Ponce-Escudero, F., Conejo-Rodríguez, Y., Martín-Vertedor, D., and Ferrero-García, J.J. 2013. Mark-recapture of Cerambyx welensii in dehesa woodlands: dispersal behaviour, population density, and mass trapping efficiency with low trap densities. Entomologia Experimentalis et Applicata, 149: 273281.CrossRefGoogle Scholar
Torres-Vila, L.M., Zugasti, C., De-Juan, J.M., Oliva, M.J., Montero, C., Mendiola, F.J., et al. 2015. Mark-recapture of Monochamus galloprovincialis with semiochemical-baited traps: population density, attraction distance, flight behaviour and mass trapping efficiency. Forestry, 88: 224236.CrossRefGoogle Scholar
Torres-Vila, L.M., Zugasti-Martínez, C., Mendiola-Diaz, F.J., De-Juan-Murillo, J.M., Sánchez-González, Á., Conejo-Rodríguez, Y., et al. 2017b. Larval assemblages of large saproxylic cerambycids in Iberian oak forests: wood quality and host preference shape resource partitioning. Population Ecology, 59: 315328.Google Scholar
Vives, E. 2000. Coleoptera Cerambycidae. Fauna Ibérica 12. Museo Nacional de Ciencias Naturales (Centro Superior de Investigaciones Científicas), Madrid, Spain.Google Scholar
Walczyńska, A. 2009. Is wood safe for its inhabitants? Bulletin of Entomological Research, 100: 461465.Google Scholar
Walczyńska, A., Dańko, M., and Kozłowski, J. 2010. The considerable adult size variability in wood feeders is optimal. Ecological Entomology, 35: 1624.Google Scholar
Wang, Q. 2002. Sexual selection of Zorion guttigerum Westwood (Coleoptera: Cerambycidae: Cerambycinae) in relation to body size and color. Journal of Insect Behavior, 15: 675687.Google Scholar
Wang, Q. and Zeng, W. 2004. Sexual selection and male aggression of Nadezhdiella cantori (Hope) (Coleoptera: Cerambycidae: Cerambycinae) in relation to body size. Environmental Entomology, 33: 657661.Google Scholar