Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T09:28:58.368Z Has data issue: false hasContentIssue false

Acute and chronic insecticidal activity of a new mannose-binding lectin from Allium porrum against Acyrthosiphon pisum via an artificial diet

Published online by Cambridge University Press:  02 April 2012

Amin Sadeghi
Affiliation:
Department of Crop Protection and Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
J.M. Van Damme
Affiliation:
Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
Katrien Michiels
Affiliation:
Department of Crop Protection and Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
Anita Kabera
Affiliation:
Department of Crop Protection and Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
Guy Smagghe*
Affiliation:
Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
*
1Corresponding author (e-mail: guy.smagghe@ugent.be).

Abstract

In view of the increasing use of plant proteins as valuable alternatives to chemical insecticides, the susceptibility of pea aphids, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), to three purified mannose-binding plant lectins was determined in an artificial-diet bioassay. The insecticidal activities of a new lectin, APA (Allium porrum L. (Liliaceae) agglutinin) from garden leek, were compared with those of GNA (Galanthus nivalis L. (Liliaceae) agglutinin) from snowdrop and ASA (Allium sativum L. agglutinin) from cultivated garlic. GNA and ASA showed acute toxicity to first-instar nymphs; LC50 values for GNA and ASA were 350 and 700 µg/mL, respectively. With APA, mortality was scored only at high doses. In chronic experiments, however, lower doses significantly reduced survival and fecundity of adults (P < 0.05). Aphids fed a diet containing APA at 100, 500, and 750 µg/mL showed a significant delay in reaching adulthood and no aphids survived beyond 19 days of development. The data support the potential application of APA in the integrated management of insect pests.

Résumé

En vue de l’utilisation de protéines végétales comme alternatives aux insecticides chimiques, la sensibilité des pucerons du pois, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), à trois lectines végétales avec une spécificité pour la mannose a été etudiée dans un test biologique d’alimentation artificielle. Les activités d’une nouvelle lectine APA (Allium porrum L. (Liliaceae)) agglutinine) issue de poireau ont été comparées à celles de GNA (Galanthus nivalis L. (Liliaceae) agglutinine) de perce-neige et ASA (Allium sativum L. agglutinine) d’ail. GNA et ASA sont les plus toxiques pour les nymphes du premier stade; les CL50 pour GNA et ASA sont 350 et 700 µg/mL, respectivement. Avec APA la mortalité a été marquée seulement à des doses élevées. Toutefois, des testes de longue durée ont montré que des doses plus faibles réduisent la survie et la fécondité des adultes d’une manière significative (P < 0,05). Les pucerons nourris avec de l’alimentation contenant APA à 100, 500 et 750 µg/mL ont montré un retard important en atteignant le stade adulte, et aucun puceron n’a survécu au-delà des 19 jours de développement. Ces données supportent l’application éventuelle de l’APA dans la lutte intégrée contre des insectes ravageurs.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.CrossRefGoogle Scholar
Auclair, J.L. 1965. Feeding and nutrition of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae), on chemically defined diets a various pH and nutrient levels. Annals of the Entomological Society of America, 58: 855875.CrossRefGoogle Scholar
Down, R.E., Gatehouse, A.M.R., Hamilton, W.D.O., and Gatehouse, J.A. 1996. Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. Journal of Insect Physiology, 42: 10351045.CrossRefGoogle Scholar
Down, R.E., Fitches, E.C., Wiles, D.P., Corti, P., Bell, H.A., Gatehouse, J.A., and Edwards, J.P. 2006. Insecticidal spider venom toxin fused to snowdrop lectin is toxic to the peach potato aphid, Myzus persicae (Hemiptera: Aphididae) and the rice brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Pest Management Science, 62: 7785.CrossRefGoogle Scholar
Dutta, I., Majumder, P., Saha, P., Ray, K., and Das, S. 2005. Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Science, 169: 9961007.CrossRefGoogle Scholar
Febvay, G., Delobel, B., and Rahbé, Y. 1988. Influence of the amino-acid balance on the improvement of an artificial diet for a biotype of Acyrthosiphon pisum (Homoptera, Aphididae). Canadian Journal of Zoology, 66: 24492453.CrossRefGoogle Scholar
Foster, S.P. 2007. Resistance to neonicotinoids in Myzus persicae in the UK: good news, bad news and challenges ahead. In Proceedings of the XVI International Plant Protection Congress, Glasgow, Scotland, 15–18 October 2007. Vol. 2. pp. 622623.Google Scholar
Gatehouse, A.M.R., Down, R.E., Powell, K.S., Sauvion, N., Rahbé, Y., Newell, C.A., Merryweather, A., Hamilton, W.D.O., and Gatehouse, J.A. 1996. Transgenic potato plants with enhanced resistance to the peach–potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 79: 295307.CrossRefGoogle Scholar
Gatehouse, A.M.R., Davison, G.M., Newell, C.A., Merryweather, A., Hamilton, W.D.O., Burgess, E.P.J., Gilbert, R.J.C., and Gatehouse, J.A. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Molecular Breeding, 3: 4963.CrossRefGoogle Scholar
GraphPad Software. 2003. Prism®. Version 4 [computer program]. GraphPad Software, La Jolla, California.Google Scholar
Hilder, V.A., Powell, K.S., Gatehouse, A.M.R., Gatehouse, J.A., Gatehouse, L.N., Shi, Y., Hamilton, W.D.O., Merryweather, A., Newell, C.A., Timans, J.C., Peumans, W.J., Van Damme, E., and Boulter, D. 1995. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research, 4: 1825.CrossRefGoogle Scholar
Kilpatrick, A.L., Hagerty, A.M., Turnipseed, S.G., Sullivan, M.J., and Bridges, W.C. 2005. Activity of selected neonicotinoids and dicrotophos on non target arthropods in cotton: implications in insect management. Journal of Economic Entomology, 98: 814820.CrossRefGoogle Scholar
Lowery, D.T., and Smirle, M.J. 2003. Comparison of bioassay techniques for determining baseline susceptibilities to imidacloprid for green apple aphid (Homoptera: Aphididae). Journal of Economic Entomology, 96: 18641871.CrossRefGoogle ScholarPubMed
Mommaerts, V., Sterk, G., and Smagghe, G. 2006. Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Management Science, 62: 752758.CrossRefGoogle ScholarPubMed
Powell, K.S., Gatehouse, A.M.R., Hilder, V.A., Van Damme, E.J.M., Peumans, W.J., Boonjawat, J., Horsham, K., and Gatehouse, J.A. 1995. Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomologia Experimentalis et Applicata, 75: 6165.CrossRefGoogle Scholar
Powell, K.S., Spence, J., Bharathi, M., Gatehouse, J.A., and Gatehouse, A.M.R. 1998. Immunohisto-chemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). Journal of Insect Physiology, 44: 529539.CrossRefGoogle Scholar
Rahbé, Y., and Febvay, G. 1993. Protein toxicity to aphids—an in vitro test on Acyrthosiphon pisum. Entomologia Experimentalis et Applicata, 67: 149160.CrossRefGoogle Scholar
Rahbé, Y., Sauvion, N., Febvay, G., Peumans, W.J., and Gatehouse, A.M.R. 1995. Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomologia Experimentalis et Applicata, 76: 143155.CrossRefGoogle Scholar
Roy, A., Banerjee, S., Majumder, P., and Das, S. 2002. Efficiency of mannose-binding plant lectins in controlling a homopteran insect, the red cotton bug. Journal of Agricultural and Food Chemistry, 50: 67756779.CrossRefGoogle ScholarPubMed
Sadeghi, A., Van Damme, E.J.M., Peumans, W.J., and Smagghe, G. 2006. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition. Phytochemistry, 67: 20782084.CrossRefGoogle ScholarPubMed
Sadeghi, A., Broeders, S., De Greve, H., Hernalsteens, J.P., Peumans, W.J., Van Damme, E.J.M., and Smagghe, G. 2007. Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Management Science, 63: 12151223.CrossRefGoogle ScholarPubMed
Sadeghi, A., Van Damme, E.J.M., and Smagghe, G. 2009. Evaluation of the susceptibility of the pea aphid, Acyrthosiphon pisum, to a selection of novel biorational insecticides using an artificial diet. Journal of Insect Science, 8. In press.Google Scholar
Sauvion, N., Rahbé, Y., Peumans, W.J., Van Damme, E.J.M., Gatehouse, J.A., and Gatehouse, A.M.R. 1996. Effects of GNA and other mannose binding lectins on development and fecundity of the peach–potato aphid Myzus persicae. Entomologia Experimentalis et Applicata, 79: 285293.CrossRefGoogle Scholar
Shahidi-Noghabi, S., Van Damme, E.J.M., and Smagghe, G. 2008. Carbohydrate-binding activity of the type-2 ribosome-inactivating protein SNA-I from elderberry (Sambucus nigra) is a determining factor for its insecticidal activity. Phytochemistry, 69: 29722978.CrossRefGoogle ScholarPubMed
Sharma, H.C., Sharma, K.K., and Crouch, J.H. 2004. Genetic transformation of crops for insect resistance: potential and limitations. Critical Reviews in Plant Sciences, 23: 4772.CrossRefGoogle Scholar
Stoger, E., Williams, S., Christou, P., Down, R.E., and Gatehouse, J.A. 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Molecular Breeding, 5: 6573.CrossRefGoogle Scholar
Van Damme, E.J.M., Allen, A.K., and Peumans, W.J. 1987. Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Letters, 215: 140144.CrossRefGoogle Scholar
Van Damme, E.J.M., Peumans, W.J., Barre, A., and Rougé, P. 1998. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Critical Reviews in Plant Sciences, 17: 575692.CrossRefGoogle Scholar
Van Emden, H., and Harrington, R. 2007. Aphids as crop pests. CAB International, Cromwell Press, Trowbridge, United Kingdom.CrossRefGoogle Scholar