Let G be a graph of order n, and let a and b be two integers with 1≤a≤b. Let h:E(G)→[0,1] be a function. If a≤∑ e∋xh(e)≤b holds for any x∈V (G), then we call G[Fh] a fractional [a,b] -factor of G with indicator function h, where Fh ={e∈E(G):h(e)>0}. A graph G is fractional independent-set-deletable [a,b] -factor-critical (in short, fractional ID-[a,b] -factor-critical) if G−I has a fractional [a,b] -factor for every independent set I of G. In this paper, it is proved that if n≥((a+2b)(a+b−2)+1 )/b and δ(G)≥((a+b)n )/(a+2b ) , then G is fractional ID-[a,b] -factor-critical. This result is best possible in some sense, and it is an extension of Chang, Liu and Zhu’s previous result.