Skip to main content Accessibility help
×
Home

A UNIQUE REPRESENTATION BI-BASIS FOR THE INTEGERS. II

  • MIN TANG (a1)

Abstract

For $n\in \mathbb{Z}$ and $A\subseteq \mathbb{Z}$ , define $r_{A}(n)$ and ${\it\delta}_{A}(n)$ by $r_{A}(n)=\#\{(a_{1},a_{2})\in A^{2}:n=a_{1}+a_{2},a_{1}\leq a_{2}\}$ and ${\it\delta}_{A}(n)=\#\{(a_{1},a_{2})\in A^{2}:n=a_{1}-a_{2}\}$ . We call $A$ a unique representation bi-basis if $r_{A}(n)=1$ for all $n\in \mathbb{Z}$ and ${\it\delta}_{A}(n)=1$ for all $n\in \mathbb{Z}\setminus \{0\}$ . In this paper, we prove that there exists a unique representation bi-basis $A$ such that $\limsup _{x\rightarrow \infty }A(-x,x)/\sqrt{x}\geq 1/\sqrt{2}$ .

Copyright

References

Hide All
[1] Chen, Y. G., ‘A problem on unique representation bases’, European J. Combin. 28 (2007), 3335.
[2] Cilleruelo, J. and Nathanson, M. B., ‘Perfect difference sets constructed from Sidon sets’, Combinatorica 28 (2008), 401414.
[3] Cilleruelo, J. and Nathanson, M. B., ‘Dense sets of integers with prescribed representation functions’, European J. Combin. 34 (2013), 12971306.
[4] Lee, J., ‘Infinitely often dense bases for the integers with a prescribed representation function’, Integers 10 (2010), 299307.
[5] Nathanson, M. B., ‘Unique representation bases for integers’, Acta Arith. 108 (2003), 18.
[6] Nathanson, M. B., ‘Every function is the representation function of an additive basis for the integers’, Port. Math. 62 (2005), 5572.
[7] Tang, M., ‘Dense sets of integers with a prescribed representation function’, Bull. Aust. Math. Soc. 84 (2011), 4043.
[8] Xiong, R. and Tang, M., ‘Unique representation bi-basis for the integers’, Bull. Aust. Math. Soc. 89 (2014), 460465.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed