Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-9pqtr Total loading time: 1.514 Render date: 2021-04-18T17:42:07.065Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

STRONGLY $q$-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR

Published online by Cambridge University Press:  17 November 2015

M. AMRI
Affiliation:
Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie email m.amri@fss.rnu.tn
M. MKAOUAR
Affiliation:
Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie email mohamed.mkaouar@fss.rnu.tn
W. WANNES
Affiliation:
Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie email w.wannes@fss.rnu.tn
Rights & Permissions[Opens in a new window]

Abstract

Let $P(n)$ denote the largest prime factor of an integer $n\geq 2$. In this paper, we study the distribution of the sequence $\{f(P(n)):n\geq 1\}$ over the set of congruence classes modulo an integer $b\geq 2$, where $f$ is a strongly $q$-additive integer-valued function (that is, $f(aq^{j}+b)=f(a)+f(b),$ with $(a,b,j)\in \mathbb{N}^{3}$$0\leq b<q^{j}$). We also show that the sequence $\{{\it\alpha}P(n):n\geq 1,f(P(n))\equiv a\;(\text{mod}~b)\}$ is uniformly distributed modulo 1 if and only if ${\it\alpha}\in \mathbb{R}\!\setminus \!\mathbb{Q}$.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Banks, W., Harman, G. and Shparlinski, I. E., ‘Distributional properties of the largest prime factor’, Michigan Math. J. 53 (2005), 665681.CrossRefGoogle Scholar
Bellman, R. and Shapiro, H. N., ‘A problem in additive number theory’, Ann. of Math. (2) 49 (1948), 333340.CrossRefGoogle Scholar
Coquet, J., ‘Sur les fonctions Q-multiplicatives et Q-additives’, Thèse $3\grave{e} me$ cycle, Orsay, 1975.Google Scholar
de La Vallée Poussin, C. J., ‘Recherches analytiques sur la théorie des nombres premiers’, Ann. Soc. Sci. Bruxelles 21 (1896), 183–256 and 281–397.Google Scholar
Hadamard, J., ‘Sur la distribution des zéros de la fonction 𝜁(s) et ses conséquences arithmétiques’, Bull. Soc. Math. France 24 (1896), 199220.CrossRefGoogle Scholar
Ivić, A., ‘On sums involving reciprocals of the largest prime factor of an integer II’, Acta. Arith. 75 (1995), 229251.CrossRefGoogle Scholar
Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences (John Wiley, New York, 1974).Google Scholar
Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen (Teubner, Leipzig, 1909).Google Scholar
Landau, E., ‘Über die 𝜁-function und die L-funktionen’, Math. Z. 20 (1924), 105125.CrossRefGoogle Scholar
Martin, B., Mauduit, C. and Rivat, J., ‘Théorème des nombres premiers pour les fonctions digitales’, Acta. Arith. 165 (2014), 1145.CrossRefGoogle Scholar
Mauduit, C. and Sárközy, A., ‘On the arithmetic structure of sets characterized by sum of digits properties’, J. Number Theory 61 (1996), 2538.CrossRefGoogle Scholar
Mkaouar, M., Ouled Azaiz, N. and Thuswaldner, J., ‘Sur les chiffres des nombres premiers translatés’, Funct. Approx. Comment. Math. 51 (2014), 237267.CrossRefGoogle Scholar
Oon, S. M., ‘Pseudorandom properties of prime factors’, Period. Math. Hungar. 49 (2004), 4563.CrossRefGoogle Scholar
Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press, Cambridge, 1995).Google Scholar
Vinogradov, I. M., The Method of Trigonometrical Sums in the Theory of Numbers (Dover, Mineola, NY, 2004).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

STRONGLY $q$-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

STRONGLY $q$-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

STRONGLY $q$-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *