Skip to main content Accessibility help
×
Home

STABLE, ALMOST STABLE AND ODD POINTS OF DYNAMICAL SYSTEMS

  • RYSZARD J. PAWLAK (a1) and ANNA LORANTY (a2)

Abstract

We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.

Copyright

Corresponding author

References

Hide All
[1] Alsedá, L., Cushing, J. M., Elaydi, S. and Pinto, A. A., Difference Equations, Discrete Dynamical Systems and Applications: ICDEA, Barcelona, Spain, July 2012, Springer Proceedings in Mathematics and Statistics, 180 (Springer, Berlin, 2016).
[2] Bruckner, A. M. and Ceder, J. G., ‘Darboux continuity’, Jahresber. Dtsch. Math.-Ver. 67 (1965), 93117.
[3] Elaydi, S. and Sacker, R. J., ‘Global stability of periodic orbits of nonautonomous difference equations in population biology and the Cushing–Henson conjectures’, J. Differential Equations 208 (2005), 258273.
[4] Kolyada, S. and Snoha, L., ‘Topological entropy of nonautonomous dynamical systems’, Random Comput. Dyn. 4(2–3) (1996), 205233.
[5] Korczak-Kubiak, E., Loranty, A. and Pawlak, R. J., ‘On local problem of entropy for functions from Zahorski classes’, Tatra Mt. Math. Publ. 65(1) (2016), 2335.
[6] Korczak-Kubiak, E., Loranty, A. and Pawlak, R. J., ‘On focusing entropy at a point’, Taiwanese J. Math. 20(5) (2016), 11171137.
[7] Korczak-Kubiak, E. and Pawlak, R. J., ‘On approximation by function having a strong entropy point’, Tatra Mt. Math. Publ. 58(1) (2014), 7789.
[8] Li, J. and Ye, X., ‘Recent development of chaos theory in topological dynamics’, Acta Math. Sin. (Engl. Ser.) 32(1) (2016), 83114.
[9] Loranty, A. and Pawlak, R. J., ‘On some sets of almost continuous functions which locally approximate a fixed function’, Tatra Mt. Math. Publ. 65 (2016), 105118.
[10] Luis, R., Elaydi, S. and Oliveira, H., ‘Nonautonomous periodic systems with Allee effects’, J. Difference Equ. Appl. 16 (2010), 11791196.
[11] Natkaniec, T., ‘Almost continuity. Topical survey’, Real Anal. Exchange 17 (1991/92), 462520.
[12] Pawlak, R. J., ‘Entropy of nonautonomous discrete dynamical systems considered in GTS and GMS’, in: Bulletin de la Société des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations, 66(3) (2016), 1128.
[13] Pawlak, R. J., Loranty, A. and Bąkowska, A., ‘On the topological entropy of continuous and almost continuous functions’, Topol. Appl. 158 (2011), 20222033.
[14] Stallings, J., ‘Fixed point theorem for connectivity maps’, Fund. Math. 47(3) (1959), 249263.
[15] Szuca, P., ‘Sharkovskiĭ’s theorem holds for some discontinuous functions’, Fund. Math. 179 (2003), 2741.
[16] Wilczyński, W., ‘Density topologies’, in: Handbook of Measure Theory (ed. Pap, E.) (Elsevier, Amsterdam, 2002), Ch. 15, 675702.
[17] Yakubu, A.-A. and Castillo-Chavez, C., ‘Interplay between local dynamics and dispersal in discrete-time metapopulation models’, J. Theoret. Biol. 218 (2002), 273288.
[18] Ye, X. and Zhang, G., ‘Entropy points and applications’, Trans. Amer. Math. Soc. 259(12) (2007), 61676186.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed