Skip to main content Accessibility help
×
Home

Stability criteria for contractive semigroups via maximality procedures

  • Mihai Turinici (a1)

Abstract

An abstract metrical version of the well-known Ekeland and Brøndsted maximality principle is used to derive a number of stability criteria for a class of (function) contractive semigroups on (complete) metric spaces, extending a number of classical contributions due to Bre'zis and Browder.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stability criteria for contractive semigroups via maximality procedures
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stability criteria for contractive semigroups via maximality procedures
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stability criteria for contractive semigroups via maximality procedures
      Available formats
      ×

Copyright

References

Hide All
[1]Bhatia, N.P., Szegö, G.P., Stability theory of dynamical systems (Die Grundlehren der mathematischen Wissenschaften, 161. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[2]Bishop, Errett and Phelps, R.R., “The support functionals of a convex set”, Proc. Sympos. Pure Math., Volume 7, Convexity, 2735 (American Mathematical Society, Providence, Rhode Island, 1963).
[3]Bony, Jean-Michel, “Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénéres”, Ann. Inst. Fourier (Grenoble) 19 (1969), 277304.
[4]Bourbaki, Nicolas, “Sur le théorèeme de Zorn”, Arch. Math. (Basel) 2 (1949/1950), 434437.
[5]Brezis, Haim, “On a characterization of flow-invariant sets”, Comm. Pure Appl. Math. 23 (1970), 261263.
[6]Br´ezis, H. and Browder, F.E., “A general principle on ordered sets in nonlinear functional analysis”, Adv. Math. 21 (1976), 355364.
[7]Brøndsted, Arne, “On a lemma of Bishop and Phelps”, Pacific J. Math. 55 (1974), 335341.
[8]Brøndsted, Arne, “Fixed points and partial orders”, Proc. Amer. Math. Soc. 60 (1976), 365366.
[9]Brøndsted, Arne, “Common fixed points and partial orders”, Proc. Amer. Math. Soc. 77 (1979), 365368.
[10]Browder, Felix E., “Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds”, J. Funct. Anal. 8 (1971), 250274.
[11]Browder, Felix E., “On a theorem of Caristi and Kirk”, Fixed point theory and its applications, 2327 (Academic Press [Harcourt Brace Jovanovich], New York, San Francisco, London, 1976).
[12]Caristi, James, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc. 215 (1976), 241251.
[13]Crandall, Michael G., “A generalization of Peano's existence theorem and flow invariance”, Proc. Amer. Math. Soc. 36 (1972), 151155.
[14]Daněs, Josef, “A geometric theorem useful in nonlinear functional analysis”, Boll. Un. Mat. Ital. (4) 6 (1972), 369375.
[15]Ekeland, Ivar, “Sur les problèmes variationnels”, C.R. Acad. Sci. Paris Sér. A 275 (1972), 10571059.
[16]Ekeland, I., “On the variational principle”, J. Math. Anal. Appl. 47 (1974), 324353.
[17]Ekeland, Ivar, “Nonconvex minimization problems”, Bull. Amer. Math. Soc. N.S. 1 (1979), 443474.
[18]Halpern, Benjamin Rigler, “Fixed point theorems for outward maps” (PhD thesis, University of California, Los Angeles, California, 1965).
[19]Holmes, Richard B., Geometric functional analysis and its applications (Graduate Texts in Mathematics, 24. Springer-Verlag, New York, Heidelberg, Berlin, 1975).
[20]Kasahara, Shouro, “On fixed points in partially ordered sets and Kirk-Caristi theorem”, Math. Sem. Notes Kobe Univ. (1975), no. 2, paper no. 35, 4pp.
[21]Kelley, John L., General topology (Graduate Texts in Mathematics, 27. Springer-Verlag, New York, Heidelberg, Berlin, 1975).
[22]Kirk, W.A., “Caristi's fixed point theorem and metric convexity”, Colloq. Math. 36 (1976), 8186.
[23]Martin, R.H. Jr, “Differential equations on closed subsets of a Banach space”, Trans. Amer. Math. Soc. 179 (1973), 399414.
[24]Nagumo, Mitio, “Über die Lage der Integralkurven gewöhnlicher Dlfferentialgleichungen”, Proc. Phys.-Math. Soc. Japan (3) 24 (1942), 551559.
[25]Немыцний, В.В. и Сте⊓анов, В.В. [Nemytskii, V.V. and Stepanov, V.V.], Качесмвенная меорuя ∂uфференцuалЪнЫх уравнеuuˇ [Qualitative theory of differential equations] (OGIZ, Moscow, 1947). See also: V.V. Nemytskii and V.V. Stepanov, Qualitative theory of differential equations (translated by Solomon Lefschetz. Princeton Mathematical Series, 22. Princeton University Press, Princeton, New Jersey, 1960).
[26]Pasicki, L., “A short proof of the Caristi theorem”, Comment. Math. prace Mat. 20 (1977/1978), 427428.
[27]Pavel, N., “Invariant sets for a class of semi-linear equations of evolution”, Nonlinear Anal. 1 (1976/1977), 187196.
[28]Redheffer, R.M., “The theorems of Bony and Brezis on flow-invariant sets”, Amer. Math. Monthly 79 (1972), 740747.
[29]Siegel, Jerrold, “A new proof of Caristi's fixed point theorem”, Proc. Amer. Math. Soc. 66 (1977), 5456.
[30]Turinici, Mihai, “Maximal elements in ordered topological spaces”, Bull. Greek Math. Soc. 20 (1979), 141148.
[31]Turinici, M., “Maximal elements in a class of order complete spaces”, Math. Japan. 25 (1980), 511517.
[32]Turinici, Mihai, “Differential inequalities via maximal element techniques”, Nonlinear Anal. 5 (1981), 757763.
[33]Turinici, Mihai, “Local and global lipschitzian mappings on ordered metric spaces”, Math. Nachr. (to appear).
[34]Turinici, Mihai, “Flow-invariance theorems via maximal element techniques”, Nederl. Akad. Wetensch. Indag. Math, (to appear).
[35]Turinici, Mihai, “Drop theorems and lipschitzianness tests via maximality procedures”, Acta Math. Acad. Sci. Hungar. (to appear).
[36]Vrabie, Ioan I., “Time optimal control for contingent equations in Hirbert spaces”, An. Ştiinţ. Univ. “Al. I. Cuza” Iasi Sect. I a Mat. (N.S.) 24 (1978), 125133.
[37]Wallace, A.D., “A fixed-point theorem”, Bull. Amer. Math. Soc. 51 (1945), 413416.
[38]Ward, L.E. Jr, “Partially ordered topological spaces”, Proc. Amer. Math. Soc. 5 (1954), 144161.
[39]Wong, Chi Song, “On a fixed point theorem of contractive type”, Proc. Amer. Math. Soc. 57 (1976), 283284.
[40]Yorke, James A., “Invariance for ordinary differential equations”, Math. Systems Theory 1 (1967), 353372.
[41]Забрейно, П.П., Красносельсний, М.А. [Zabreĭko, P.P., Krasnosel'skiĭ], M.A., “О Разрешимости Нелинейных О⊓ераторных Уравнений” [The solvability of nonlinear operator equations], Funkoional. Anal, i Priložen. 5 (1971), no. 3, 4244. English Transl: Functional Anal. Appl. 5 (1971), 206–208.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed