Skip to main content Accessibility help
×
×
Home

PRIMITIVE PERMUTATION GROUPS CONTAINING A CYCLE

  • GARETH A. JONES (a1)
Abstract

The primitive finite permutation groups containing a cycle are classified. Of these, only the alternating and symmetric groups contain a cycle fixing at least three points. This removes a primality condition from a classical theorem of Jordan. Some applications to monodromy groups are given, and the contributions of Jordan and Marggraff to this topic are briefly discussed.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      PRIMITIVE PERMUTATION GROUPS CONTAINING A CYCLE
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      PRIMITIVE PERMUTATION GROUPS CONTAINING A CYCLE
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      PRIMITIVE PERMUTATION GROUPS CONTAINING A CYCLE
      Available formats
      ×
Copyright
References
Hide All
[1]Atkinson, M. D., ‘Doubly transitive but not doubly primitive permutation groups II’, J. Lond. Math. Soc. (2) 10 (1975), 5360.
[2]Belyĭ, G. V., ‘On Galois extensions of a maximal cyclotomic field’, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 267276, 479.
[3]Bouw, I. I. and Osserman, B., ‘Some 4-point Hurwitz numbers in positive characteristic’, Trans. Amer. Math. Soc. 363 (2011), 66856711.
[4]Bubboloni, D. and Praeger, C. E., ‘Normal coverings of finite symmetric and alternating groups’, J. Combin. Theory Ser. A 118 (2011), 20002024.
[5]Burnside, W., Theory of Groups of Finite Order, 2nd edn. (Cambridge University Press, Cambridge, 1911), reprinted (Dover, New York, 1955).
[6]Cameron, P. J., ‘Permutation groups and finite simple groups’, Bull. Lond. Math. Soc. 13 (1981), 122.
[7]Choi, C., ‘On subgroups of ${M}_{24} $. II: The maximal subgroups of ${M}_{24} $’, Trans. Amer. Math. Soc. 167 (1972), 2947.
[8]Conder, M. D. E., ‘Generators for alternating and symmetric groups’, J. Lond. Math. Soc. (2) 22 (1980), 7586.
[9]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).
[10]Dixon, J. D. and Mortimer, B., Permutation Groups (Springer, New York, 1996).
[11]Feit, W., ‘On symmetric balanced incomplete block designs with doubly transitive automorphism groups’, J. Combin. Theory Ser. A 14 (1973), 221247.
[12]Jones, G. A., ‘Cyclic regular subgroups of primitive permutation groups’, J. Group Theory 5 (2002), 403407.
[13]Jordan, C., ‘Théorèmes sur les groupes primitifs’, J. Math. Pures Appl. (2) 16 (1871), 383408.
[14]Jordan, C., ‘Sur la limite de transitivité des groupes non alternés’, Bull. Soc. Math. France 1 (1873), 4071.
[15]Jordan, C., Oeuvres de Camille Jordan, Tome I (Gauthiers-Villars, Paris, 1961).
[16]Levingston, R. and Taylor, D. E., ‘The theorem of Marggraff on primitive permutation groups which contain a cycle’, Bull. Aust. Math. Soc. 15 (1976), 125128.
[17]Marggraff, B., Über primitive Gruppen mit transitiven Untergruppen geringeren Grades, Inaugural Dissertation, Univ. Giessen, c. 1890.
[18]Marggraff, B., ‘Primitive Gruppen, welche eine transitive Gruppe geringeren Grades enthalten’, Wissenschaftliche Beilage zum Jahresberichte des Sophien-Gymnasiums zu Berlin, 1895.
[19]Müller, P., ‘Reducibility behavior of polynomials with varying coefficients’, Israel J. Math. 94 (1996), 5991.
[20]Müller, P., Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Siegel functions, arXiv:math/01110060 (2001).
[21]Müller, P., ‘Permutation groups with a cyclic two-orbits subgroup and monodromy groups of Laurent polynomials’, Ann. Sci. Norm. Super. Pisa Cl. Sci., to appear, doi:10.2422/2036-2145.201012_002.
[22]Neumann, P. M., Review of [16], Math. Rev. 54, 12870.
[23]Neumann, P. M., ‘Some primitive permutation groups’, Proc. Lond. Math. Soc (3) 50 (1985), 265281.
[24]Serre, J.-P., Topics in Galois Theory (Jones and Bartlett, Boston, 1992).
[25]Wielandt, H., Finite Permutation Groups (Academic Press, New York, 1964).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed