Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 2.845 Render date: 2021-02-26T02:13:56.972Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION axmbyn=c

Published online by Cambridge University Press:  13 January 2010

BO HE
Affiliation:
Department of Mathematics, ABA Teachers College, Wenchuan, Sichuan 623000, PR China (email: bhe@live.cn)
ALAIN TOGBÉ
Affiliation:
Mathematics Department, Purdue University North Central, 1401 South US 421, Westville IN 46391, USA (email: atogbe@pnc.edu, atogbe@juno.com)
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Let a, b, c, x and y be positive integers. In this paper we sharpen a result of Le by showing that the Diophantine equation has at most two positive integer solutions (m,n) satisfying min (m,n)>1.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

The first author was supported by the Applied Basic Research Foundation of Sichuan Provincial Science and Technology Department (No. 2009JY0091). The second author is grateful to Purdue University North Central for the support.

References

[1]Bennett, M., ‘On some exponential equations of S. S. Pillai’, Canad. J. Math. 53 (2001), 897922.CrossRefGoogle Scholar
[2]Bugeaud, Y. and Luca, F., ‘On Pillai’s diophantine equation’, New York J. Math. 12 (2006), 193217.Google Scholar
[3]Bugeaud, Y. and Shorey, T. N., ‘On the diophantine equation ’, Pacific J. Math. 207 (2002), 6175.CrossRefGoogle Scholar
[4]Cao, Z. F., ‘On the equation ax mby n=2’, Kexue Tongbao 35 (1990), 558559 (in Chinese).Google Scholar
[5]Cassels, J. W. S., ‘On the equation a xb y=1. II’, Proc. Cambridge Philos. Soc. 56 (1960), 97103.CrossRefGoogle Scholar
[6]Dickson, L. E., History of the Theory of Numbers, Vol. II (Carnegie Institution of Washington. Reprinted by Chelsea Publ. Co., New York, 1971).Google Scholar
[7]He, B. and Togbé, A., ‘On the number of solutions of Goormaghtigh equation for given x and y’, Indag. Math. (N.S.) 19(1) (2008), 6572.CrossRefGoogle Scholar
[8]Herschfeld, A., ‘The equation 2x−3y=d’, Bull. Amer. Math. Soc. 42 (1936), 231234.CrossRefGoogle Scholar
[9]Le, M., ‘A note on the diophantine equation ax mby n=k’, Indag. Math. 3(2) (1992), 185191.Google Scholar
[10]LeVeque, W. J., ‘On the equation a xb y=1’, Amer. J. Math. 74 (1952), 325331.CrossRefGoogle Scholar
[11]Matveev, E. M., ‘An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers II’, Izv. Math. 64 (2000), 12171269.CrossRefGoogle Scholar
[12]Mihailescu, P., ‘Primary cyclotomic units and a proof of Catalan’s conjecture’, J. Reine Angew. Math. 572 (2004), 167195.Google Scholar
[13] PARI/GP, version 2.1.7, Bordeaux, 2005, http://pari.math.u-bordeaux.fr/.Google Scholar
[14]Pillai, S. S., ‘On the inequality 0<a xb yn’, J. Indian Math. Soc. 19 (1931), 111.Google Scholar
[15]Pillai, S. S., ‘On a xb y=c’, J. Indian Math. Soc. (N.S.) 2 (1936), 119122.Google Scholar
[16]Ribenboim, P., Catalan’s Conjecture (Academic Press, London, 1994).Google Scholar
[17]Ribenboim, P., My Numbers, My Friends: Popular Lectures on Number Theory (Springer, Berlin, 2000).Google Scholar
[18]Shorey, T. N., ‘On the equation ax mby n=k’, Indag. Math. 48 (1986), 353358.CrossRefGoogle Scholar
[19]Stroeker, R. J. and Tijdeman, R., Diophantine equations, Computational Methods in Number Theory, Part II, Math. Centre Tracts, 155 (Math. Centrum, Amsterdam, 1982), pp. 321369.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 195 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th February 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION axmbyn=c
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION axmbyn=c
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ON THE NUMBER OF SOLUTIONS OF THE DIOPHANTINE EQUATION axmbyn=c
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *