Skip to main content Accessibility help
×
Home

ON ALGEBRAIC INVARIANTS FOR FREE ACTIONS ON HOMOTOPY SPHERES

  • JANG HYUN JO (a1)

Abstract

We investigate conjectures and questions regarding topological phenomena related to free actions on homotopy spheres and present some affirmative answers.

Copyright

References

Hide All
[1]Adem, A. and Smith, J., ‘Periodic complexes and group extensions’, Ann. of Math. (2) 154 (2001), 407435.
[2]Asadollahi, J., Bahlekeh, A., Hajizamani, A. and Salarian, S., ‘On certain homological invariants of groups’, J. Algebra 335 (2011), 1835.
[3]Asadollahi, J., Bahlekeh, A. and Salarian, S., ‘On the hierarchy of cohomological dimension of groups’, J. Pure Appl. Algebra 213 (2009), 17951803.
[4]Asadollahi, J., Hajizamani, A. and Salarian, S., ‘Periodic flat resolutions and periodicity in group (co)homology’, Forum Math. 24 (2012), 273287.
[5]Bahlekeh, A., Dembegioti, F. and Talelli, O., ‘Gorenstein dimension and proper actions’, Bull. Lond. Math. Soc. 41 (2009), 859871.
[6]Benson, D. J. and Carlson, J. F., ‘Products in negative cohomology’, J. Pure Appl. Algebra 82 (1992), 107129.
[7]Brown, K. S., Cohomology of Groups (Springer, Berlin–Heidelberg–New York, 1982).
[8]Dembegioti, F. and Talelli, O., ‘On a relation between certain cohomological invariants’, J. Pure Appl. Algebra 212 (2008), 14321437.
[9]Emmanouil, I., ‘On certain cohomological invariants of groups’, Adv. Math. 225 (2010), 34463462.
[10]Emmanouil, I., ‘A homological characterization of locally finite groups’, J. Algebra 352 (2012), 167172.
[11]Emmanouil, I. and Talelli, O., ‘On the flat length of injective modules’, J. Lond. Math. Soc. (2) 84 (2011), 408432.
[12]Gedrich, T. V. and Gruenberg, K. W., ‘Complete cohomological functors of groups’, Topology Appl. 25 (1987), 203223.
[13]Goichot, F., ‘Homologie de Tate-Vogel équivariante’, J. Pure Appl. Algebra 82 (1992), 3964.
[14]Holm, H., ‘Gorenstein homological dimensions’, J. Pure Appl. Algebra 189 (2004), 167193.
[15]Ikenaga, B. M., ‘Homological dimension and Farrell cohomology’, J. Algebra 87 (1984), 422457.
[16]Jensen, C. U., Les foncterus dérivés de $\displaystyle \lim _{\longleftarrow }$et leurs applications en theorie des modules, Lecture Notes in Mathemtaics, 254 (Springer, Berlin–Heidelberg–New York, 1972).
[17]Jo, J. H., ‘Projective complete cohomological dimension of a group’, Int. Math. Res. Not. IMRN 13 (2004), 621636.
[18]Jo, J. H., ‘Complete homology and related dimensions of groups’, J. Group Theory 12 (2009), 431448.
[19]Jo, J. H. and Nucinkis, B. E. A., ‘Periodic cohomology and subgroups with bounded Bredon cohomological dimension’, Math. Proc. Cambridge Philos. Soc. 144 (2008), 329336.
[20]Kropholler, P. H., ‘Hierarchical decompositions, generalized Tate cohomology, and groups of type (FP)’, in: Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Mathematical Society Lecture Note Series, 204 (Cambridge University Press, Cambridge, 1995), 190216.
[21]Kropholler, P. H., Martinez-Pérez, C. and Nucinkis, B. E. A., ‘Cohomological finiteness conditions for elementary amenable groups’, J. reine angew. Math. 637 (2009), 4962.
[22]Kropholler, P. H. and Talelli, O., ‘On a property of fundamental groups of graphs of finite groups’, J. Pure Appl. Algebra 74 (1991), 5759.
[23]Mislin, G., ‘Tate cohomology for arbitrary groups via satellites’, Topology Appl. 56 (1994), 293300.
[24]Mislin, G. and Talelli, O., ‘On groups which act freely and properly on finite dimensional homotopy spheres’, in: Computational and Geometric Aspects of Modern Algebra (Edinburgh, 1998), London Mathematical Society Lecture Note Series, 275 (Cambridge University Press, Cambridge, 2000), 208228.
[25]Petrosyan, N., ‘Jumps in cohomology and free group actions’, J. Pure Appl. Algebra 210 (2007), 695703.
[26]Rotman, J. J., An Introduction to Homological Algebra, 2nd edn (Universitext, Springer, New York, 2009).
[27]Talelli, O., ‘On cohomological periodicity for infinite groups’, Comment. Math. Helv. 55 (1980), 178192.
[28]Talelli, O., ‘On groups with periodic cohomology after 1-step’, J. Pure Appl. Algebra 30 (1983), 8593.
[29]Talelli, O., ‘On groups with property O1’, Bull. Soc. Math. Greece (N.S.) 29 (1988), 8590.
[30]Talelli, O., ‘On groups with cdG ≤ 1’, J. Pure Appl. Algebra 88 (1993), 245247.
[31]Talelli, O., ‘Periodicity in group cohomology and complete resolutions’, Bull. Lond. Math. Soc. 37 (2005), 547554.
[32]Talelli, O., ‘On periodic (co)homology of groups’, Comm. Algebra 40 (2012), 11671172.
[33]Talelli, O., ‘On the Gorenstein and cohomological dimension of groups’, Proc. Amer. Math. Soc. 142 (2014), 11751180.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed