[1]
Borwein, P., Choi, S. and Chu, F., ‘An old conjecture of Erdős–Turán on additive bases’, Math. Comp.
75 (2006), 475–484.

[2]
Chen, Y.-G., ‘The analogue of Erdős–Turán conjecture in ℤ_{
m
}
’, J. Number Theory
128 (2008), 2573–2581.

[3]
Chen, Y.-G., ‘On the Erdős–Turán conjecture’, C. R. Acad. Sci. Paris Sér. I
350 (2012), 933–935.

[4]
Chen, Y.-G. and Sun, T., ‘The difference basis and bi-basis of ℤ_{
m
}
’, J. Number Theory
130 (2010), 716–726.

[5]
Chen, Y.-G. and Tang, M., ‘On a generalization of a theorem of Sárközy and Sós’, European J. Combin.
54 (2016), 201–206.

[6]
Dubickas, A., ‘A basis of finite and infinite sets with small representation function’, Electron. J. Combin.
19 (2012), #P6, 16 pages.

[7]
Erdős, P. and Turán, P., ‘On a problem of Sidon in additive number theory, and on some related problems’, J. Lond. Math. Soc.
16 (1941), 212–215.

[8]
Grekos, G., Haddad, L., Helou, C. and Pihko, J., ‘On the Erdős–Turán conjecture’, J. Number Theory
102 (2003), 339–352.

[9]
Konstantoulas, I., ‘Lower bounds for a conjecture of Erdős and Turán’, Acta Arith.
159 (2013), 301–313.

[10]
Lev, V. F. and Sárközy, A., ‘An Erdős–Fuchs type theorem for finite groups’, Integers
11 (2011), 487–494.

[11]
Nathanson, M. B., ‘Unique representation bases for the integers’, Acta Arith.
108 (2003), 1–8.

[12]
Ruzsa, I. Z., ‘A just basis’, Monatsh. Math.
109 (1990), 145–151.

[13]
Sándor, C. and Yang, Q.-H., ‘A lower bound of Ruzsa’s number related to the Erdős–Turán conjecture’, Preprint, 2016, arXiv:1612.08722v1.
[14]
Tang, M., ‘On the Erdős–Turán conjecture’, J. Number Theory
150 (2015), 74–80.

[15]
Tang, M. and Chen, Y.-G., ‘The new upper bounds of some Ruzsa numbers *R*
_{
m
}
’, J. Math. Res. Exposition
30 (2010), 557–561.