Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-tcprc Total loading time: 2.73 Render date: 2023-02-02T15:56:41.774Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM

Published online by Cambridge University Press:  14 August 2012

FILIP STROBIN*
Affiliation:
Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland (email: filip.strobin@p.lodz.pl)
JAROSŁAW SWACZYNA
Affiliation:
Institute of Mathematics, Łódź University of Technology, Wólczańska 215, 93-005 Łódź, Poland (email: jswaczyna@wp.pl)
*
For correspondence; e-mail: filip.strobin@p.lodz.pl
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We follow the idea of generalising the notion of classical iterated function systems, as presented by Mihail and Miculescu. We give their deliberations a more general setting and, using this general approach, study the generic aspect of the problem of existence of an attractor of a function system.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[B]Barnsley, M. F., Fractals Everywhere (Academic Press, Boston, 1993).Google Scholar
[Br]Browder, F., ‘On the convergence of successive approximations for nonlinear functional equations’, Indag. Math. 30 (1968), 2735.CrossRefGoogle Scholar
[DM]De Blasi, F. and Myjak, J., ‘Sur la porosité de l’ensemble des contractions sans point fixe’, C. R. Acad. Sci. Paris 308 (1989), 5154.Google Scholar
[GD]Granas, A. and Dugundji, J., Fixed Point Theory, Springer Monographs in Mathematics (Springer, New York, 2003).CrossRefGoogle Scholar
[H]Hutchinson, J., ‘Fractals and self-similarity’, Indiana Univ. Math. J. 30(5) (1981), 713747.CrossRefGoogle Scholar
[J]Jachymski, J. and Jóźwik, I., ‘Nonlinear contractive conditions: a comparison and related problems’, Banach Center Publ. 77 (2007), 123146.CrossRefGoogle Scholar
[M]Mihail, A., ‘Recurrent iterated function systems’, Rev. Roumaine Math. Pures Appl. 53(1) (2008), 4353.Google Scholar
[Ma]Máté, L., ‘The Hutchinson–Barnsley theorey for certain noncontraction mappings’, Period. Math. Hungar. 27(1) (1993), 2133.CrossRefGoogle Scholar
[MM1]Mihalil, A. and Miculescu, R., ‘Applications of fixed point theorems in the theory of generalized IFS’, Fixed Point Theory and Applications 2008 (2008), article ID 312876, 11 pp;doi:10.1155/2008/312876.Google Scholar
[MM2]Michalil, A. and Miculescu, R., ‘Generalized IFSs on noncompact spaces’, Fixed Point Theory and Applications 2010 (2010), article ID 584215, 11 pp; doi:10.1155/2010/584215.Google Scholar
[S1]Strobin, F., Genericity and Porosity of Some Subsets of Function Spaces, Doctorial Dissertation, Polish Academy of Sciences, 2011.Google Scholar
[S2]Strobin, F., ‘Some porous and meager sets of continuous mappings’, J. Nonlinear Convex Anal. 13(2) (2012), 351361.Google Scholar
[S3]Strobin, F., ‘σ-porous sets of generalized nonexpansive mappings’, Fixed Point Theory, to appear.Google Scholar
[Se]Serban, M., ‘Fixed point theorems for operators on Cartesian product spaces and applications’, Semin. Fixed Point Theory Cluj-Napoca 3 (2002), 163172.Google Scholar
[RZ1]Reich, S. and Zaslavski, A., ‘Almost all nonexpansive mappings are contractive’, C. R. Math. Acad. Sci. Soc. R. Can. 22(3) (2000), 118124.Google Scholar
[RZ2]Reich, S. and Zaslavski, A., ‘The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings’, C. R. Acad. Sci. Paris Sér. I Math. 333(6) (2001), 539544.CrossRefGoogle Scholar
[Z1]Zajíček, L., ‘Porosity and σ-porosity’, Real Anal. Exchange 13(2) (1987/88), 314350.Google Scholar
[Z2]Zajíček, L., ‘On σ-porous sets in abstract spaces’, Abstr. Appl. Anal. 5 (2005), 509534.CrossRefGoogle Scholar
You have Access
36
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

ON A CERTAIN GENERALISATION OF THE ITERATED FUNCTION SYSTEM
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *