[1]
Granville, A. and Sun, Z. W., ‘Values of Bernoulli polynomials’, Pacific J. Math.
172 (1996), 117–137.
[2]
Ireland, K. and Rosen, M., A Classical Introduction to Modern Number Theory, 2nd edn (Springer, New York, 1990).
[3]
Lehmer, E., ‘On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson’, Ann. of Math. (2)
39 (1938), 350–360.
[4]
Magnus, W., Oberhettinger, F. and Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn (Springer, New York, 1966), 25–32.
[5]
Mao, G. S. and Sun, Z. W., ‘New congruences involving products of two binomial coefficients’, Ramanujan J.
49 (2019), 237–256.
[6]
Mortenson, E., ‘A supercongruence conjecture of Rodriguez–Villegas for a certain truncated hypergeometric function’, J. Number Theory
99 (2003), 139–147.
[7]
Mortenson, E., ‘Supercongruences between truncated _{2}
F
_{1} hypergeometric functions and their Gaussian analogs’, Trans. Amer. Math. Soc.
355 (2003), 987–1007.
[8]
Rodriguez-Villegas, F., ‘Hypergeometric families of Calabi–Yau manifolds’, in: Calabi–Yau Varieties and Mirror Symmetry, (Toronto, ON, 2001), Fields Institute Communications, 38 (eds. Yui, N. and Lewis, J. D.) (American Mathematical Society, Providence, RI, 2003), 223–231.
[9]
Sun, Z. H., ‘Congruences for Bernoulli numbers and Bernoulli polynomials’, Discrete Math.
163 (1997), 153–163.
[10]
Sun, Z. H., ‘Congruences concerning Bernoulli numbers and Bernoulli polynomials’, Discrete Appl. Math.
105 (2000), 193–223.
[11]
Sun, Z. H., ‘Congruences involving Bernoulli polynomials’, Discrete Math.
308 (2008), 71–112.
[12]
Sun, Z. H., ‘Identities and congruences for a new sequence’, Int. J. Number Theory
8 (2012), 207–225.
[13]
Sun, Z. H., ‘Generalized Legendre polynomials and related supercongruences’, J. Number Theory
143 (2014), 293–319.
[14]
Sun, Z. H., ‘Super congruences concerning Bernoulli polynomials’, Int. J. Number Theory
11 (2015), 2393–2404.
[15]
Sun, Z. H., ‘Supercongruences involving Bernoulli polynomials’, Int. J. Number Theory
12 (2016), 1259–1271.
[16]
Sun, Z. H., ‘Supercongruences involving Euler polynomials’, Proc. Amer. Math. Soc.
144 (2016), 3295–3308.
[17]
Sun, Z. W., ‘
p-adic congruences motivated by series’, J. Number Theory
134 (2014), 181–196.