Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T12:29:58.878Z Has data issue: false hasContentIssue false

Linear geometries on the Moebius strip: A theorem of Skornyakov type

Published online by Cambridge University Press:  17 April 2009

Rainer Löwen
Affiliation:
Institut für Analysis und Algebra, Technische Universität, Pockelsstr. 14, 38106 Braunschweig, Germany, e-mail: r.loewen@tu-bs.de
Burkard Polster
Affiliation:
School of Mathematical Sciences, Monash University, Victoria 3800, Australia, e-mail: Burkard.Polster@sci.monash.edu.au
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that the continuity properties of a stable plane are automatically satisfied if we have a linear space with point set a Moebius strip, provided that the lines are closed subsets homeomorphic to the real line or to the circle. In other words, existence of a unique line joining two distinct points implies continuity of join and intersection. For linear spaces with an open disk as point set, the same result was proved by Skornyakov.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Ahlfors, L.V. and Sario, L., Riemann surfaces, Princeton Mathematical Series 26 (Princeton University Press, Princeton, N.J., 1960).Google Scholar
[2]Betten, D., ‘Topologische Geometrien auf dem Möbiusband’, Math. Z. 107 (1968), 363379.Google Scholar
[3]Brown, M., ‘The monotone union of open n-cells is an open n-cell’, Proc. Amer. Math. Soc. 12 (1961), 812814.Google Scholar
[4]Groh, H., ‘Topologische Laguerreebenen I’, Abh. Math. Sem. Univ. Hamburg 32 (1968), 216231.CrossRefGoogle Scholar
[5]Groh, H., ‘Topologische Laguerreebenen II’, Abh. Math. Sem. Univ. Hamburg 34 (1970), 1122.CrossRefGoogle Scholar
[6]Grundhöfer, T. and Löwen, R., ‘Linear topological geometries’, (Chapter 23), in Handbook of incidence geometry (North Holland, Amsterdam, 1995), pp. 12551324.Google Scholar
[7]Löwen, R., ‘Central collineations and the parallel axiom in stable planes’, Geom. Dedicata 10 (1981), 283315.Google Scholar
[8]Löwen, R., ‘Ends of surface geometries, revisited’, Geom. Dedicata 58 (1995), 175183.Google Scholar
[9]Newman, M.H.A., Elements of the topology of plane sets, (reprinted by Dover Publications, New York, 1992) (Cambridge University Press, New York, 1961).Google Scholar
[10]Salzmann, H., ‘Topological planes’, Adv. Math. 2 (1967), 160.Google Scholar
[11]Salzmann, H., ‘Geometries on surfaces’, Pacific J. Math. 29 (1967), 397402.Google Scholar
[12]Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M., Compact projective planes (de Gruyter, Berlin, New York, 1995).Google Scholar
[13]Schenkel, A., Topologische Minkowski-Ebenen, Dissertation (Erlangen-Nürnberg, 1980).Google Scholar
[14]Skornyakov, L.A., ‘Systems of curves on a plane’, (in Russian), Trudy Moskov. Mat. Ob-shch. 6 (1957), 135164.Google Scholar
[15]Stroppel, M., ‘A note on Hilbert and Beltrami systems’, Results Math. 24, 242247.Google Scholar
[16]Wölk, R.D., ‘Topologische Möbiusebenen’, Math. Z. 93 (1966), 311333.CrossRefGoogle Scholar