Skip to main content Accessibility help
×
Home

HOLOMORPHIC FLOWS WITH PERIODIC ORBITS ON STEIN SURFACES

  • BRUNO SCÁRDUA (a1)

Abstract

In this paper we study the classification of holomorphic flows on Stein spaces of dimension two. We assume that the flow has periodic orbits, not necessarily with a same period. Then we prove a linearization result for the flow, under some natural conditions on the surface.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      HOLOMORPHIC FLOWS WITH PERIODIC ORBITS ON STEIN SURFACES
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      HOLOMORPHIC FLOWS WITH PERIODIC ORBITS ON STEIN SURFACES
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      HOLOMORPHIC FLOWS WITH PERIODIC ORBITS ON STEIN SURFACES
      Available formats
      ×

Copyright

References

Hide All
[1]Brunella, M., ‘Some remarks on parabolic foliations’, in: Geometry and Dynamics, Contemporary Mathematics, 389 (American Mathematical Society, Providence, RI, 2005), pp. 91102.
[2]Camacho, C., Movasati, H. and Scárdua, B., ‘-actions on Stein analytic spaces with isolated singularities’, J. Geom. Anal. 19(2) (2009), 244260.
[3]Camacho, C. and Sad, P., ‘Invariant varieties through singularities of holomorphic vector fields’, Ann. of Math. (2) 115 (1982), 579595.
[4]Camacho, C. and Scárdua, B., ‘Dicritical holomorphic flows on Stein manifolds’, Arch. Math. 89 (2007), 339349.
[5]Camacho, C. and Scárdua, B., ‘Nondicritical ℂ*-actions on two-dimensional Stein manifolds’, Manuscripta Math. 129(1) (2009), 9198.
[6]Camacho, C. and Scárdua, B., ‘Actions of the groups ℂ and ℂ* on Stein varieties.’, Geom. Dedicata 139 (2009), 514.
[7]Cerveau, D. and Scárdua, B., ‘Complete polynomial vector fields in two complex variables’, Forum Math. 17(3) (2005), 407430.
[8]Hausen, J., ‘Zur Klassifikation glatter kompakter ℂ*-Flächen’, Math. Ann. 301 (1995).
[9]Hausen, J., ‘Holomorphe ℂ*-Operationen auf komplexen Flächen’, Dissertation, Konstanzer Schriften in Mathematik und Informatik 11, 1996. Available at http://www.inf.uni-konstanz.de/Preprints/papers/1996/preprint-011.ps.
[10]Martinet, J. and Ramis, J.-P., ‘Problème de modules pour des équations différentielles non lineaires du premier ordre’, Publ. Math. Inst. Hautes Études Sci. 55 (1982), 63124.
[11]Martinet, J. and Ramis, J.-P., ‘Classification analytique des équations différentielles non lineaires resonnants du premier ordre’, Ann. Sci. École Norm. Sup. 16 (1983), 571621.
[12]Mattei, J. F. and Moussu, R., ‘Holonomie et intégrales premières’, Ann. Sci. École Norm. Sup. 13 (1980), 469523.
[13]Nishino, T., ‘Nouvelles recherches sur les fonctions entires de plusieurs variables complexes. I’, J. Math. Kyoto Univ. 8 (1968), 49100.
[14]Scárdua, B., ‘On the classification of holomorphic flows and Stein surfaces’, Complex Var. Elliptic Equ. 52(1) (2007), 7983.
[15]Seade, J., On the Topology of Isolated Singularities in Analytic Spaces, Progress in Mathematics, 241 (Birkhäuser, Basel, 2006).
[16]Seidenberg, A., ‘Reduction of singularities of the differential equation A dy=B dx’, Amer. J. Math. 90 (1968), 248269.
[17]Snow, D., ‘Reductive group actions on Stein spaces’, Math. Ann 259 (1982), 7997.
[18]Suzuki, M., ‘Sur les opérations holomorphes de ℂ et de ℂ* sur un espace de Stein’, in: Séminaire Norguet, Lecture Notes, 670 (Springer, Berlin, 1977), pp. 8088.
[19]Suzuki, M., ‘Sur les opérations holomorphes du groupe additif complexe sur l’espace de deux variables complexes’, Ann. Sci. École Norm. Sup. (4) 10 (1977), 517546.
[20]Yamaguchi, H., ‘Parabolicité d’une fonction entière’, J. Math. Kyoto Univ. 16(1) (1976), 7192.
[21]Yamaguchi, H., ‘Calcul des variations analytiques’, Japan. J. Math. (N.S.) 7(2) (1981), 319377.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

HOLOMORPHIC FLOWS WITH PERIODIC ORBITS ON STEIN SURFACES

  • BRUNO SCÁRDUA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed