Skip to main content Accessibility help


  • GUOPING ZHAO (a1), WEICHAO GUO (a2) and XIAO YU (a3)


We use a unified approach to study the boundedness of fractional integral operators on $\unicode[STIX]{x1D6FC}$ -modulation spaces and find sharp conditions for boundedness in the full range.


Corresponding author


Hide All

This work is partially supported by the National Natural Science Foundation of China (nos. 11601456, 11701112, 11671414, 11771388, 11371316), China Postdoctoral Science Foundation (no. 2017M612628) and the Natural Science Foundation of Jiangxi Province (no. 20151BAB211002).



Hide All
[1] Bényi, A., Grafakos, L., Gröchenig, K. and Okoudjou, K. A., ‘A class of Fourier multipliers for modulation spaces’, Appl. Comput. Harmon. Anal. 19(1) (2005), 131139.
[2] Bényi, A., Gröchenig, K., Okoudjou, K. A. and Rogers, L. G., ‘Unimodular Fourier multiplier for modulation spaces’, J. Funct. Anal. 246 (2007), 366384.
[3] Brenner, P., Thomee, V. and Wahlbin, L. B., Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Mathematics, vol. 434 (Springer, Berlin–Heidelberg, 1975).
[4] Borup, L., ‘Pseudodifferential operators on 𝛼-modulation spaces’, J. Funct. Spaces Appl. 2 (2004), 107123.
[5] Borup, L. and Nielsen, M., ‘Nonlinear approximation in 𝛼-modulation spaces’, Math. Nachr. 279 (2006), 101120.
[6] Borup, L. and Nielsen, M., ‘Banach frames for multivariate 𝛼-modulation spaces’, J. Math. Anal. Appl. 321 (2006), 880895.
[7] Borup, L. and Nielsen, M., ‘Boundedness for pseudodifferential operators on multivariate𝛼-modulation spaces’, Ark. Mat. 44 (2006), 241259.
[8] Chen, J., Fan, D. and Sun, L., ‘Asymptotic estimates for unimodular Fourier multipliers on modulation spaces’, Discrete Contin. Dyn. Syst. 32 (2012), 467485.
[9] Feichtinger, H. G., ‘‘Modulation spaces on locally compact Abelian group’, Technical Report, University of Vienna, 1983’, in: Proc. Internat. Conf. on Wavelet and Applications (New Delhi Allied Publishers, India, 2003), 99140.
[10] Galperin, Y. V. and Samarah, S., ‘Time-frequency analysis on modulation spaces M m p, q , 0 < p, q ’, Appl. Comput. Harmon. Anal. 16(1) (2004), 118.
[11] Gröbner, P., ‘Banachräume Glatter Funktionen und Zerlegungsmethoden’, Doctoral Thesis, University of Vienna, 1992.
[12] Guo, W. and Chen, J., ‘Strichartz estimates on 𝛼-modulation spaces’, Electron. J. Differ. Equ. 118 (2013), 113.
[13] Guo, W., Fan, D., Wu, H. and Zhao, G., ‘Sharpness of complex interpolation on 𝛼-modulation spaces’, J. Fourier Anal. Appl. 22(2) (2016), 427461.
[14] Guo, W., Fan, D., Wu, H. and Zhao, G., ‘Full characterization of embedding relations between𝛼-modulation spaces’, Science China Math. (in press).
[15] Han, J. and Wang, B., ‘𝛼-modulation spaces (I): embedding, interpolation and algebra properties’, J. Math. Soc. Japan 66 (2014), 13151373.
[16] Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A. and Tomita, N., ‘Estimates for unimodular Fourier multipliers on modulation spaces’, Proc. Amer. Math. Soc. 137 (2009), 38693883.
[17] Ruzhansky, M., Sugimoto, M., Tomita, N. and Toft, J., ‘Changes of variables in modulation and Wiener amalgam spaces’, Math. Nachr. 284 (2011), 20782092.
[18] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970).
[19] Sugimoto, M. and Tomita, N., ‘A remark on fractional integrals on modulation spaces’, Math Nachr. 281 (2008), 13721379.
[20] Toft, J., ‘The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators’, J. Pseudo-Differ. Oper. Appl. 3 (2012), 145227.
[21] Toft, J., ‘Gabor analysis for a broad class of quasi-Banach modulation spaces’, in: Pseudo-Differential Operators, Generalized Functions, Operator Theory: Advances and Applications, 245 (eds. Pilipović, S. and Toft, J.) (Birkhäuser, Cham, 2015), 249278.
[22] Toft, J., ‘Images of function and distribution spaces under the Bargmann transform’, J. Pseudo-Differ. Oper. Appl. 8 (2017), 83139.
[23] Toft, J. and Wahlberg, P., ‘Embeddings of 𝛼-modulation spaces’, Pliska Stud. Math. Bulgar. 21 (2012), 2546.
[24] Tomita, N., ‘Fractional integrals on modulation spaces’, Math. Nachr. 279 (2006), 672680.
[25] Triebel, H., Theory of Function Spaces, Monographs in Mathematics, vol. 78 (Birkhäuser, Basel–Boston–Stuttgart, 1983).
[26] Wang, B. and Hudzik, H., ‘The global Cauchy problem for the NLS and NLKG with small rough data’, J. Differ. Equ. 232 (2007), 3673.
[27] Wu, X. and Chen, J., ‘Boundedness of fractional integral operators on 𝛼-modulation spaces’, Appl. Math. J. Chinese Univ. Ser. A 29(3) (2014), 339351.
[28] Zhong, Y. and Chen, J., ‘Modulation space estimates for the fractional integral operators’, Sci. China Math. 54 (2011), 111.
[29] Zhao, G., Chen, J., Fan, D. and Guo, W., ‘Sharp estimates of unimodular multipliers on frequency decomposition spaces’, Nonlinear Anal. 142 (2016), 2647.
[30] Zhao, G., Fan, D. and Guo, W., ‘Fractional integral operators on 𝛼-modulation spaces’, Math. Nachr. 289 (2016), 12881300.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed