Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-12T18:13:33.164Z Has data issue: false hasContentIssue false

Dynamics for vortex curves of the Ginzburg-Landau equations

Published online by Cambridge University Press:  17 April 2009

Liu Zuhan
Affiliation:
Department of Mathematics, Normal College, Yangzhou University, Yangzhou 225002, China e-mail: zuhanl@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the asymptotic behaviour of solutions to the evolutionary Ginzburg- Landau equations in three dimensions. We show that the motion of the Ginzburg-Landau vortex curves is the flow by curvature.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Altschuler, S., ‘Singularities of the curve shortening flow for space curves’, J. Differential Geom. 34 (1991), 491514.CrossRefGoogle Scholar
[2]Ambrosio, L. and Soner, H.M., ‘Level set approach to mean curvature flow in arbitray condimension’, J. Differential Geom. 43 (1996), 693737.CrossRefGoogle Scholar
[3]Jerrard, R. and Soner, M., ‘Dynamics of Ginzburg-Landau vortices’, Arch. Rational Mech. Anal. 142 (1998), 99125.CrossRefGoogle Scholar
[4]Lin, F.H., ‘Some dynamical properties of Ginzburg-Landau vortices’, Comm. Pure Appl. Math. 49 (1996), 323359.3.0.CO;2-E>CrossRefGoogle Scholar
[5]Lin, F.H., ‘A remark on the previous paper: “Some dynamical properties of Ginzburg-Landau vortices”’, Comm. Pure Appl. Math. 49 (1996), 361364.Google Scholar
[6]Lin, F.H., ‘Static and moving vortices in Ginzburg-Landau theories’, in Nonlinear partial differential equations in geometry and physics (Knoxville, TN, 1995), Progr. Nonlinear Differential Equations Appl. 29 (Birkhauser, Basel, 1997), pp. 71111.CrossRefGoogle Scholar
[7]Lin, F.H., ‘Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds’, Comm. Pure Appl. Math. 51 (1983), 385441.3.0.CO;2-5>CrossRefGoogle Scholar
[8]Neu, J.C., ‘Vortices in complex scalar fields’, Phys. D. 43 (1990), 385406.CrossRefGoogle Scholar
[9]Neu, J.C., ‘Vortex dynamics of the nonlinear wave equation’, Phys. D. 43 (1990), 407420.CrossRefGoogle Scholar
[10]Peres, L. and Rubinstein, J., ‘Vortex dynamics in U(1) Ginzburg-Landau models’, Phys. D. 64 (1993), 299309.CrossRefGoogle Scholar
[11]Rubinstein, J., ‘On the equilibrium position of Ginzburg-Landau vortices’, Z. Angew. Math. Phys. 46 (1995), 739751.CrossRefGoogle Scholar
[12]Simon, L., Lectures on geometric measure theory (Center for Math. Analysis, Australian National University, A.C.T., 1984).Google Scholar
[13]Stahl, A., ‘Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition’, Calc. Var. Partial Differential Equations 4 (1996), 385407.CrossRefGoogle Scholar
[14]Weinan, E., –Dynamics of vortices in Ginzburg-Landau theories with applications to sup-conductivity’, Phys. D. 77 (1994), 383404.CrossRefGoogle Scholar