[1]
Brown, B., Dairyko, M., Garcia, S. R., Lutz, B. and Someck, M., ‘Four quotient set gems’, Amer. Math. Monthly
121(7) (2014), 590–599.
[2]
Bukor, J. and Tóth, J. T., ‘On accumulation points of ratio sets of positive integers’, Amer. Math. Monthly
103(4) (1996), 502–504.
[3]
Bukor, J., Erdős, P., Šalát, T. and Tóth, J. T., ‘Remarks on the (R)-density of sets of numbers. II’, Math. Slovaca
47(5) (1997), 517–526.
[4]
Bukor, J., Šalát, T. and Tóth, J. T., ‘Remarks on R-density of sets of numbers’, Tatra Mt. Math. Publ.
11 (1997), 159–165.
[6]
Donnay, C., Garcia, S. R. and Rouse, J., ‘
p-adic quotient sets II: Quadratic forms’, J. Number Theory
201 (2019), 23–39.
[7]
Garcia, S. R., ‘Quotients of Gaussian primes’, Amer. Math. Monthly
120(9) (2013), 851–853.
[8]
Garcia, S. R. and Luca, F., ‘Quotients of Fibonacci numbers’, Amer. Math. Monthly
123(10) (2016), 1039–1044.
[9]
Garcia, S. R., Hong, Y. X., Luca, F., Pinsker, E., Sanna, C., Schechter, E. and Starr, A., ‘
p-adic quotient sets’, Acta Arith.
179(2) (2017), 163–184.
[10]
Garcia, S. R., Selhorst-Jones, V., Poore, D. E. and Simon, N., ‘Quotient sets and Diophantine equations’, Amer. Math. Monthly
118(8) (2011), 704–711.
[11]
Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers, 6th edn (Oxford University Press, Oxford, 2008), revised by D. R. Heath-Brown and J. H. Silverman, with a foreword by Andrew Wiles.
[12]
Hedman, S. and Rose, D., ‘Light subsets of ℕ with dense quotient sets’, Amer. Math. Monthly
116(7) (2009), 635–641.
[13]
Hobby, D. and Silberger, D. M., ‘Quotients of primes’, Amer. Math. Monthly
100(1) (1993), 50–52.
[15]
Miska, P., Murru, N. and Sanna, C., ‘On the p-adic denseness of the quotient set of a polynomial image’, J. Number Theory
197 (2019), 218–227.
[16]
Pan, M. and Zhang, W., ‘Quotients of Hurwitz primes’, Preprint, 2019, arXiv:1904.08002. [17]
Sanna, C., ‘The quotient set of k-generalised Fibonacci numbers is dense in ℚ_{p}
’, Bull. Aust. Math. Soc.
96(1) (2017), 24–29.
[18]
Sittinger, B. D., ‘Quotients of primes in an algebraic number ring’, Notes Number Theory Discrete Math.
24(2) (2018), 55–62.
[19]
Starni, P., ‘Answers to two questions concerning quotients of primes’, Amer. Math. Monthly
102(4) (1995), 347–349.
[20]
Strauch, O. and Tóth, J. T., ‘Asymptotic density of A ⊂N and density of the ratio set R (A)’, Acta Arith.
87(1) (1998), 67–78.
[21]
Strauch, O. and Tóth, J. T., ‘Corrigendum to Theorem 5 of the paper: “Asymptotic density of A ⊂ℕ and density of the ratio set R (A)”’, Acta Arith.
103(2) (2002), 191–200; Acta Arith.
87(1) (1998), 67–78.
[22]
Šalát, T., ‘On ratio sets of sets of natural numbers’, Acta Arith.
15 (1968/1969), 273–278.
[23]
Šalát, T., ‘Corrigendum to the paper “On ratio sets of sets of natural numbers”’, Acta Arith.
16 (1969/1970), 103.