For every integer
$k\geq 2$
and every
$A\subseteq \mathbb{N}$
, we define the
$k$
-directions sets of
$A$
as
$D^{k}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{k}\}$
and
$D^{\text{}\underline{k}}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{\text{}\underline{k}}\}$
, where
$\Vert \cdot \Vert$
is the Euclidean norm and
$A^{\text{}\underline{k}}:=\{\boldsymbol{a}\in A^{k}:a_{i}\neq a_{j}\text{ for all }i\neq j\}$
. Via an appropriate homeomorphism,
$D^{k}(A)$
is a generalisation of the ratio set
$R(A):=\{a/b:a,b\in A\}$
. We study
$D^{k}(A)$
and
$D^{\text{}\underline{k}}(A)$
as subspaces of
$S^{k-1}:=\{\boldsymbol{x}\in [0,1]^{k}:\Vert \boldsymbol{x}\Vert =1\}$
. In particular, generalising a result of Bukor and Tóth, we provide a characterisation of the sets
$X\subseteq S^{k-1}$
such that there exists
$A\subseteq \mathbb{N}$
satisfying
$D^{\text{}\underline{k}}(A)^{\prime }=X$
, where
$Y^{\prime }$
denotes the set of accumulation points of
$Y$
. Moreover, we provide a simple sufficient condition for
$D^{k}(A)$
to be dense in
$S^{k-1}$
. We conclude with questions for further research.