Skip to main content Accessibility help
×
Home

COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS

  • ADAM CHAPMAN (a1)

Abstract

We show that over any field $F$ of characteristic 2 and 2-rank $n$ , there exist $2^{n}$ bilinear $n$ -fold Pfister forms that have no slot in common. This answers a question of Becher [‘Triple linkage’, Ann. $K$ -Theory, to appear] in the negative. We provide an analogous result also for quadratic Pfister forms.

Copyright

References

Hide All
[1] Arason, J. K. and Baeza, R., ‘Relations in I n and I n W q in characteristic 2’, J. Algebra 314(2) (2007), 895911.
[2] Aravire, R. and Baeza, R., ‘Milnor’s k-theory and quadratic forms over fields of characteristic two’, Comm. Algebra 20(4) (1992), 10871107.
[3] Baeza, R., Quadratic Forms over Semilocal Rings, Lecture Notes in Mathematics, 655 (Springer, New York, 1978).
[4] Baeza, R., ‘Comparing u-invariants of fields of characteristic 2’, Bol. Soc. Brasil. Mat. 13(1) (1982), 105114.
[5] Becher, K. J., ‘Triple linkage’, Ann. $K$ -Theory, to appear.
[6] Chapman, A., ‘Common subfields of p-algebras of prime degree’, Bull. Belg. Math. Soc. Simon Stevin 22(4) (2015), 683686.
[7] Chapman, A. and Dolphin, A., ‘Differential forms, linked fields, and the u-invariant’, Arch. Math. (Basel) 109(2) (2017), 133142.
[8] Chapman, A., Dolphin, A. and Laghribi, A., ‘Total linkage of quaternion algebras and Pfister forms in characteristic two’, J. Pure Appl. Algebra 220(11) (2016), 36763691.
[9] Chapman, A., Dolphin, A. and Leep, D. B., ‘Triple linkage of quadratic Pfister forms’, Manuscripta Math., to appear.
[10] Chapman, A., Gilat, S. and Vishne, U., ‘Linkage of quadratic Pfister forms’, Comm. Algebra 45(12) (2017), 52125226.
[11] Chapman, A. and McKinnie, K., ‘Kato–Milne cohomology and polynomial forms’, J. Pure Appl. Algebra, to appear.
[12] Draxl, P., ‘Über gemeinsame separabel-quadratische Zerfällungskörper von Quaternionenalgebren’, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 16 (1975), 251259.
[13] Elman, R., Karpenko, N. and Merkurjev, A., The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical Society Colloquium Publications, 56 (American Mathematical Society, Providence, RI, 2008).
[14] Elman, R. and Lam, T. Y., ‘Quadratic forms and the u-invariant. II’, Invent. Math. 21 (1973), 125137.
[15] Faivre, F., Liaison des formes de Pfister et corps de fonctions de quadriques en caractéristique 2, PhD Thesis, Université de Franche-Comté, 2006.
[16] Fried, M. D. and Jarden, M., Field Arithmetic, 3rd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 11 (Springer, Berlin, 2008), revised by M. Jarden.
[17] Kato, K., ‘Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic two’, Invent. Math. 66(3) (1982), 493510.
[18] Lam, T. Y., ‘On the linkage of quaternion algebras’, Bull. Belg. Math. Soc. Simon Stevin 9(3) (2002), 415418.
[19] Tignol, J.-P. and Wadsworth, A. R., Value Functions on Simple Algebras, and Associated Graded Rings, Springer Monographs in Mathematics (Springer, Cham, 2015).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

COMMON SLOTS OF BILINEAR AND QUADRATIC PFISTER FORMS

  • ADAM CHAPMAN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed